IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v586y2022ics0378437121007470.html
   My bibliography  Save this article

Laplacian integration of graph convolutional network with tensor completion for traffic prediction with missing data in inter-city highway network

Author

Listed:
  • Dong, Hanxuan
  • Ding, Fan
  • Tan, Huachun
  • Zhang, Hailong

Abstract

Traffic prediction on a large-scale road network is of great importance to various applications. However, many factors such as sensor failure and communication errors inevitably resulted in a sparse distribution of effective detection points with missing data, which resulting adversely affects the accuracy of traffic prediction.

Suggested Citation

  • Dong, Hanxuan & Ding, Fan & Tan, Huachun & Zhang, Hailong, 2022. "Laplacian integration of graph convolutional network with tensor completion for traffic prediction with missing data in inter-city highway network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
  • Handle: RePEc:eee:phsmap:v:586:y:2022:i:c:s0378437121007470
    DOI: 10.1016/j.physa.2021.126474
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121007470
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126474?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Xinqiang & Chen, Huixing & Yang, Yongsheng & Wu, Huafeng & Zhang, Wenhui & Zhao, Jiansen & Xiong, Yong, 2021. "Traffic flow prediction by an ensemble framework with data denoising and deep learning model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    2. Yang, Senyan & Wu, Jianping & Xu, Yanyan & Yang, Tao, 2019. "Revealing heterogeneous spatiotemporal traffic flow patterns of urban road network via tensor decomposition-based clustering approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Ke & Lin, Xi & Li, Meng, 2023. "Graph attention reinforcement learning with flexible matching policies for multi-depot vehicle routing problems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    2. Wenbao Zeng & Ketong Wang & Jianghua Zhou & Rongjun Cheng, 2023. "Traffic Flow Prediction Based on Hybrid Deep Learning Models Considering Missing Data and Multiple Factors," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    3. Ma, Changxi & Zhao, Mingxi, 2023. "Spatio-temporal multi-graph convolutional network based on wavelet analysis for vehicle speed prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    2. Shao, Feng & Shao, Hu & Wang, Dongle & Lam, William H.K., 2024. "A multi-task spatio-temporal generative adversarial network for prediction of travel time reliability in peak hour periods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    3. Hang Shen & Lin Li & Haihong Zhu & Yu Liu & Zhenwei Luo, 2021. "Exploring a Pricing Model for Urban Rental Houses from a Geographical Perspective," Land, MDPI, vol. 11(1), pages 1-28, December.
    4. Chengmei Wang & Yuchuan Du, 2022. "ELM-Based Non-Singular Fast Terminal Sliding Mode Control Strategy for Vehicle Platoon," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    5. Cankun Wei & Meichen Fu & Li Wang & Hanbing Yang & Feng Tang & Yuqing Xiong, 2022. "The Research Development of Hedonic Price Model-Based Real Estate Appraisal in the Era of Big Data," Land, MDPI, vol. 11(3), pages 1-30, February.
    6. Zhang, Kunpeng & Feng, Xiaoliang & Jia, Ning & Zhao, Liang & He, Zhengbing, 2022. "TSR-GAN: Generative Adversarial Networks for Traffic State Reconstruction with Time Space Diagrams," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    7. Liu, Yang & Song, Yaolun & Zhang, Yan & Liao, Zhifang, 2022. "WT-2DCNN: A convolutional neural network traffic flow prediction model based on wavelet reconstruction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    8. Wu, Jiaxin & Zhou, Xubing & Peng, Yi & Zhao, Xiaojun, 2022. "Recurrence analysis of urban traffic congestion index on multi-scale," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    9. Hu, Xu & Li, Dongshuang & Yu, Zhaoyuan & Yan, Zhenjun & Luo, Wen & Yuan, Linwang, 2022. "Quantum harmonic oscillator model for fine-grained expressway traffic volume simulation considering individual heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    10. Krešimir Kušić & Edouard Ivanjko & Filip Vrbanić & Martin Gregurić & Ivana Dusparic, 2021. "Spatial-Temporal Traffic Flow Control on Motorways Using Distributed Multi-Agent Reinforcement Learning," Mathematics, MDPI, vol. 9(23), pages 1-28, November.
    11. Philip Cammin & Jingjing Yu & Stefan Voß, 2023. "Tiered prediction models for port vessel emissions inventories," Flexible Services and Manufacturing Journal, Springer, vol. 35(1), pages 142-169, March.
    12. Wang, Ke & Ma, Changxi & Qiao, Yihuan & Lu, Xijin & Hao, Weining & Dong, Sheng, 2021. "A hybrid deep learning model with 1DCNN-LSTM-Attention networks for short-term traffic flow prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    13. Li, Yisha & Chen, Guoxi & Zhang, Ya, 2023. "Cycle-based signal timing with traffic flow prediction for dynamic environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    14. Han, Yu & Zhang, Mingyu & Guo, Yanyong & Zhang, Le, 2022. "A streaming-data-driven method for freeway traffic state estimation using probe vehicle trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    15. Wang, Yun & Xu, Houhua & Song, Mengmeng & Zhang, Fan & Li, Yifen & Zhou, Shengchao & Zhang, Lingjun, 2023. "A convolutional Transformer-based truncated Gaussian density network with data denoising for wind speed forecasting," Applied Energy, Elsevier, vol. 333(C).
    16. Ziwen Song & Feng Sun & Rongji Zhang & Yingcui Du & Guiliang Zhou, 2021. "An Improved Cellular Automaton Traffic Model Based on STCA Model Considering Variable Direction Lanes in I-VICS," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    17. Wang, Kun & Xiong, Li & Xue, Rudan, 2024. "Real-time data stream learning for emergency decision-making under uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    18. Ma, Changxi & Zhao, Mingxi & Huang, Xiaoting & Zhao, Yongpeng, 2024. "Optimized deep extreme learning machine for traffic prediction and autonomous vehicle lane change decision-making," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    19. Li, Xianghua & Deng, Yue & Yuan, Xuesong & Wang, Zhen & Gao, Chao, 2022. "Data-driven behavioral analysis and applications: A case study in Changchun, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    20. Salvatore Antonio Biancardo & Francesco Avella & Ernesto Di Lisa & Xinqiang Chen & Francesco Abbondati & Gianluca Dell’Acqua, 2021. "Multiobjective Railway Alignment Optimization Using Ballastless Track and Reduced Cross-Section in Tunnel," Sustainability, MDPI, vol. 13(19), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:586:y:2022:i:c:s0378437121007470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.