IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v586y2022ics0378437121006786.html
   My bibliography  Save this article

Do cryptocurrency exchanges fake trading volumes? An empirical analysis of wash trading based on data mining

Author

Listed:
  • Chen, Jialan
  • Lin, Dan
  • Wu, Jiajing

Abstract

Cryptocurrency exchanges, which act as a platform for cryptocurrency trading, play a vital role in the ever-growing cryptocurrency market. However, with the rapid development of this emerging market, some unethical phenomena including faking trading volume have also appeared in cryptocurrency exchanges. To this end, this paper proposes a data mining-based method based on off-chain data and on-chain transaction data to detect the exchanges that fake trading volume. In particular, we first collect off-chain data from the websites of five exchanges and the on-chain data provided by a blockchain browser, and then analyze them from two perspectives, including transaction number and transaction amount. The empirical results suggest that Huobi exchange fakes trading volume most obviously, while Binance trading is relatively the most honest. In addition, different exchanges adopt distinct counterfeiting strategies when creating wash trading.

Suggested Citation

  • Chen, Jialan & Lin, Dan & Wu, Jiajing, 2022. "Do cryptocurrency exchanges fake trading volumes? An empirical analysis of wash trading based on data mining," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
  • Handle: RePEc:eee:phsmap:v:586:y:2022:i:c:s0378437121006786
    DOI: 10.1016/j.physa.2021.126405
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121006786
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126405?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michel Rauchs & Garrick Hileman, 2017. "Global Cryptocurrency Benchmarking Study," Cambridge Centre for Alternative Finance Reports 201704-gcbs, Cambridge Centre for Alternative Finance, Cambridge Judge Business School, University of Cambridge.
    2. Friedhelm Victor & Andrea Marie Weintraud, 2021. "Detecting and Quantifying Wash Trading on Decentralized Cryptocurrency Exchanges," Papers 2102.07001, arXiv.org.
    3. Weili Chen & Jun Wu & Zibin Zheng & Chuan Chen & Yuren Zhou, 2019. "Market Manipulation of Bitcoin: Evidence from Mining the Mt. Gox Transaction Network," Papers 1902.01941, arXiv.org.
    4. Makarov, Igor & Schoar, Antoinette, 2020. "Trading and arbitrage in cryptocurrency markets," LSE Research Online Documents on Economics 100409, London School of Economics and Political Science, LSE Library.
    5. Makarov, Igor & Schoar, Antoinette, 2020. "Trading and arbitrage in cryptocurrency markets," Journal of Financial Economics, Elsevier, vol. 135(2), pages 293-319.
    6. Neil Gandal & Hanna Halaburda, 2016. "Can We Predict the Winner in a Market with Network Effects? Competition in Cryptocurrency Market," Games, MDPI, vol. 7(3), pages 1-21, July.
    7. Jiaqi Liang & Linjing Li & Daniel Zeng, 2018. "Evolutionary dynamics of cryptocurrency transaction networks: An empirical study," Papers 1808.08585, arXiv.org.
    8. Yukun Liu & Aleh Tsyvinski & Xi Wu, 2019. "Common Risk Factors in Cryptocurrency," NBER Working Papers 25882, National Bureau of Economic Research, Inc.
    9. Jiaqi Liang & Linjing Li & Daniel Zeng, 2018. "Evolutionary dynamics of cryptocurrency transaction networks: An empirical study," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-18, August.
    10. Altan, Aytaç & Karasu, Seçkin & Bekiros, Stelios, 2019. "Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 325-336.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Dan & Wu, Jiajing & Xuan, Qi & Tse, Chi K., 2022. "Ethereum transaction tracking: Inferring evolution of transaction networks via link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    2. Zięba, Damian, 2024. "If GPU(time) == money: Sustainable crypto-asset market? Analysis of similarity among crypto-asset financial time series," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 863-912.
    3. Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Marcin Wk{a}torek, 2023. "What is mature and what is still emerging in the cryptocurrency market?," Papers 2305.05751, arXiv.org.
    4. Gu, Zhuoming & Lin, Dan & Wu, Jiajing, 2022. "On-chain analysis-based detection of abnormal transaction amount on cryptocurrency exchanges," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    5. Goel, Rajeev K. & Mazhar, Ummad, 2024. "Cryptocurrency use and tax collections: Direct and indirect channels of influence," Journal of Financial Stability, Elsevier, vol. 72(C).
    6. Baumgartner, Tim & Güttler, André, 2022. "Bitcoin flash crash on May 19, 2021: What did really happen on Binance?," IWH Discussion Papers 25/2022, Halle Institute for Economic Research (IWH).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cong, Lin William & Mayer, Simon, 2022. "The Coming Battle of Digital Currencies," Applied Economics and Policy Working Paper Series 320020, Cornell University, Department of Applied Economics and Management.
    2. Lin William Cong & Yizhou Xiao, 2021. "Categories and Functions of Crypto-Tokens," Springer Books, in: Maurizio Pompella & Roman Matousek (ed.), The Palgrave Handbook of FinTech and Blockchain, edition 1, chapter 0, pages 267-284, Springer.
    3. Hanna Halaburda & Guillaume Haeringer & Joshua Gans & Neil Gandal, 2022. "The Microeconomics of Cryptocurrencies," Journal of Economic Literature, American Economic Association, vol. 60(3), pages 971-1013, September.
    4. Klaus Grobys, 2021. "When the blockchain does not block: on hackings and uncertainty in the cryptocurrency market," Quantitative Finance, Taylor & Francis Journals, vol. 21(8), pages 1267-1279, August.
    5. Bennett, Donyetta & Mekelburg, Erik & Williams, T.H., 2023. "BeFi meets DeFi: A behavioral finance approach to decentralized finance asset pricing," Research in International Business and Finance, Elsevier, vol. 65(C).
    6. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
    7. Bianchi, Daniele & Babiak, Mykola, 2022. "On the performance of cryptocurrency funds," Journal of Banking & Finance, Elsevier, vol. 138(C).
    8. Neil Gandal & J. T. Hamrick & Tyler Moore & Marie Vasek, 2021. "The rise and fall of cryptocurrency coins and tokens," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 981-1014, December.
    9. Luciano Somoza & Antoine Didisheim, 2022. "The End of the Crypto-Diversification Myth," Swiss Finance Institute Research Paper Series 22-53, Swiss Finance Institute.
    10. Melisa Ozdamar & Levent Akdeniz & Ahmet Sensoy, 2021. "Lottery-like preferences and the MAX effect in the cryptocurrency market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.
    11. Saggese, Pietro & Belmonte, Alessandro & Dimitri, Nicola & Facchini, Angelo & Böhme, Rainer, 2023. "Arbitrageurs in the Bitcoin ecosystem: Evidence from user-level trading patterns in the Mt. Gox exchange platform," Journal of Economic Behavior & Organization, Elsevier, vol. 213(C), pages 251-270.
    12. Saketh Aleti & Bruce Mizrach, 2021. "Bitcoin spot and futures market microstructure," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(2), pages 194-225, February.
    13. Lin William Cong & Xi Li & Ke Tang & Yang Yang, 2023. "Crypto Wash Trading," Management Science, INFORMS, vol. 69(11), pages 6427-6454, November.
    14. Shahriari, Zahra & Nazarimehr, Fahimeh & Rajagopal, Karthikeyan & Jafari, Sajad & Perc, Matjaž & Svetec, Milan, 2022. "Cryptocurrency price analysis with ordinal partition networks," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    15. Ye Li & Simon Mayer & Simon Mayer, 2021. "Money Creation in Decentralized Finance: A Dynamic Model of Stablecoin and Crypto Shadow Banking," CESifo Working Paper Series 9260, CESifo.
    16. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & Lingbo Li & David Martinez-Regoband & Fan Wu, 2020. "Cryptocurrency Trading: A Comprehensive Survey," Papers 2003.11352, arXiv.org, revised Jan 2022.
    17. Dong, Bingbing & Jiang, Lei & Liu, Jinyu & Zhu, Yifeng, 2022. "Liquidity in the cryptocurrency market and commonalities across anomalies," International Review of Financial Analysis, Elsevier, vol. 81(C).
    18. Lin, Dan & Wu, Jiajing & Xuan, Qi & Tse, Chi K., 2022. "Ethereum transaction tracking: Inferring evolution of transaction networks via link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    19. Guo, Li & Sang, Bo & Tu, Jun & Wang, Yu, 2024. "Cross-cryptocurrency return predictability," Journal of Economic Dynamics and Control, Elsevier, vol. 163(C).
    20. Chen, Bin-xia & Sun, Yan-lin, 2024. "Risk characteristics and connectedness in cryptocurrency markets: New evidence from a non-linear framework," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:586:y:2022:i:c:s0378437121006786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.