IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v89y2024ipbp863-912.html
   My bibliography  Save this article

If GPU(time) == money: Sustainable crypto-asset market? Analysis of similarity among crypto-asset financial time series

Author

Listed:
  • Zięba, Damian

Abstract

This study conducts a formal analysis of the price creation mechanisms of Proof-of-Work (PoW) and non-PoW crypto assets revealing that the long-term market trend aligns with the rising production cost of Bitcoin supply. Enabling the utilization of computational power for solving real-world problems, similar to data centers, would facilitate the sustainability of the crypto-asset market. On the other hand, Proof-of-Stake crypto assets may serve as a practical tool for managing the collaboration between startups and venture capitalists. The second part of the analysis proposes a co-movement measure, which might be more efficient than correlation metrics for analyzing the similarity between financial time series of returns.

Suggested Citation

  • Zięba, Damian, 2024. "If GPU(time) == money: Sustainable crypto-asset market? Analysis of similarity among crypto-asset financial time series," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 863-912.
  • Handle: RePEc:eee:reveco:v:89:y:2024:i:pb:p:863-912
    DOI: 10.1016/j.iref.2023.10.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056023004069
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2023.10.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akyildirim, Erdinc & Aysan, Ahmet Faruk & Cepni, Oguzhan & Darendeli, S. Pinar Ceyhan, 2021. "Do investor sentiments drive cryptocurrency prices?," Economics Letters, Elsevier, vol. 206(C).
    2. M. Wili'nski & A. Sienkiewicz & T. Gubiec & R. Kutner & Z. R. Struzik, 2013. "Structural and topological phase transitions on the German Stock Exchange," Papers 1301.2530, arXiv.org, revised Jul 2013.
    3. Millington, Tristan & Niranjan, Mahesan, 2021. "Stability and similarity in financial networks—How do they change in times of turbulence?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    4. Pavel Ciaian & Miroslava Rajcaniova & d’Artis Kancs, 2016. "The economics of BitCoin price formation," Applied Economics, Taylor & Francis Journals, vol. 48(19), pages 1799-1815, April.
    5. Wiliński, M. & Sienkiewicz, A. & Gubiec, T. & Kutner, R. & Struzik, Z.R., 2013. "Structural and topological phase transitions on the German Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5963-5973.
    6. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    7. Yo-Der Song & Tomaso Aste, 2020. "The cost of Bitcoin mining has never really increased," Papers 2004.04605, arXiv.org, revised May 2020.
    8. Wei Zhang & Pengfei Wang & Xiao Li & Dehua Shen, 2018. "Some stylized facts of the cryptocurrency market," Applied Economics, Taylor & Francis Journals, vol. 50(55), pages 5950-5965, November.
    9. Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Pawe{l} O'swik{e}cimka & Tomasz Stanisz & Marcin Wk{a}torek, 2020. "Complexity in economic and social systems: cryptocurrency market at around COVID-19," Papers 2009.10030, arXiv.org.
    10. Millington, Tristan & Niranjan, Mahesan, 2021. "Construction of minimum spanning trees from financial returns using rank correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    11. Lucey, Brian M. & Vigne, Samuel A. & Yarovaya, Larisa & Wang, Yizhi, 2022. "The cryptocurrency uncertainty index," Finance Research Letters, Elsevier, vol. 45(C).
    12. Vilém Novák & Soheyla Mirshahi, 2021. "On the Similarity and Dependence of Time Series," Mathematics, MDPI, vol. 9(5), pages 1-14, March.
    13. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2018. "Collective behavior of cryptocurrency price changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 499-509.
    14. Katsiampa, Paraskevi & Yarovaya, Larisa & Zięba, Damian, 2022. "High-frequency connectedness between Bitcoin and other top-traded crypto assets during the COVID-19 crisis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    15. Chen, Jialan & Lin, Dan & Wu, Jiajing, 2022. "Do cryptocurrency exchanges fake trading volumes? An empirical analysis of wash trading based on data mining," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    16. A. Sienkiewicz & T. Gubiec & R. Kutner & Z. R. Struzik, 2013. "Dynamic structural and topological phase transitions on the Warsaw Stock Exchange: A phenomenological approach," Papers 1301.6506, arXiv.org.
    17. Yousaf, Imran & Yarovaya, Larisa, 2022. "Static and dynamic connectedness between NFTs, Defi and other assets: Portfolio implication," Global Finance Journal, Elsevier, vol. 53(C).
    18. Cees Diks & Marcin Wolski, 2016. "Nonlinear Granger Causality: Guidelines for Multivariate Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1333-1351, November.
    19. Chaim, Pedro & Laurini, Márcio P., 2019. "Nonlinear dependence in cryptocurrency markets," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 32-47.
    20. Stuart Wimbush, 2018. "Cryptocurrency mining is neither wasteful nor uneconomic," Nature, Nature, vol. 555(7697), pages 443-443, March.
    21. Pennec, Guénolé Le & Fiedler, Ingo & Ante, Lennart, 2021. "Wash trading at cryptocurrency exchanges," Finance Research Letters, Elsevier, vol. 43(C).
    22. Malfuzi, A. & Mehr, A.S. & Rosen, Marc A. & Alharthi, M. & Kurilova, A.A., 2020. "Economic viability of bitcoin mining using a renewable-based SOFC power system to supply the electrical power demand," Energy, Elsevier, vol. 203(C).
    23. Yarovaya, Larisa & Zięba, Damian, 2022. "Intraday volume-return nexus in cryptocurrency markets: Novel evidence from cryptocurrency classification," Research in International Business and Finance, Elsevier, vol. 60(C).
    24. Ren, Boru & Lucey, Brian, 2022. "Do clean and dirty cryptocurrency markets herd differently?," Finance Research Letters, Elsevier, vol. 47(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    2. Damian Zięba & Katarzyna Śledziewska, 2018. "Are demand shocks in Bitcoin contagious?," Working Papers 2018-17, Faculty of Economic Sciences, University of Warsaw.
    3. Jae Woo Lee & Ashadun Nobi, 2018. "State and Network Structures of Stock Markets around the Global Financial Crisis," Papers 1806.04363, arXiv.org.
    4. Luis Lorenzo & Javier Arroyo, 2022. "Analysis of the cryptocurrency market using different prototype-based clustering techniques," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-46, December.
    5. Jae Woo Lee & Ashadun Nobi, 2018. "State and Network Structures of Stock Markets Around the Global Financial Crisis," Computational Economics, Springer;Society for Computational Economics, vol. 51(2), pages 195-210, February.
    6. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    7. Katsiampa, Paraskevi & Yarovaya, Larisa & Zięba, Damian, 2022. "High-frequency connectedness between Bitcoin and other top-traded crypto assets during the COVID-19 crisis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    8. Zhang, Ditian & Zhuang, Yangyang & Tang, Pan & Han, Qingying, 2022. "The evolution of foreign exchange market: A network view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
    9. Millington, Tristan & Niranjan, Mahesan, 2021. "Stability and similarity in financial networks—How do they change in times of turbulence?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    10. Nguyen, Q. & Nguyen, N.K. K. & Nguyen, L.H. N., 2019. "Dynamic topology and allometric scaling behavior on the Vietnamese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 235-243.
    11. Nobi, Ashadun & Maeng, Seong Eun & Ha, Gyeong Gyun & Lee, Jae Woo, 2014. "Effects of global financial crisis on network structure in a local stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 135-143.
    12. Ditian Zhang & Yangyang Zhuang & Pan Tang & Hongjuan Peng & Qingying Han, 2023. "Financial price dynamics and phase transitions in the stock markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(3), pages 1-21, March.
    13. Yousaf, Imran & Abrar, Afsheen & Yarovaya, Larisa, 2023. "Decentralized and centralized exchanges: Which digital tokens pose a greater contagion risk?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 89(C).
    14. Nie, Chun-Xiao, 2020. "Correlation dynamics in the cryptocurrency market based on dimensionality reduction analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    15. Fiedor, Paweł, 2014. "Sector strength and efficiency on developed and emerging financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 180-188.
    16. Li, Jianxuan & Shi, Yingying & Cao, Guangxi, 2018. "Topology structure based on detrended cross-correlation coefficient of exchange rate network of the belt and road countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1140-1151.
    17. Dunbar, Kwamie & Owusu-Amoako, Johnson, 2023. "Predictability of crypto returns: The impact of trading behavior," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    18. Bennett, Donyetta & Mekelburg, Erik & Williams, T.H., 2023. "BeFi meets DeFi: A behavioral finance approach to decentralized finance asset pricing," Research in International Business and Finance, Elsevier, vol. 65(C).
    19. Yousaf, Imran & Yarovaya, Larisa, 2022. "Herding behavior in conventional cryptocurrency market, non-fungible tokens, and DeFi assets," Finance Research Letters, Elsevier, vol. 50(C).
    20. Nguyen, An Pham Ngoc & Mai, Tai Tan & Bezbradica, Marija & Crane, Martin, 2023. "Volatility and returns connectedness in cryptocurrency markets: Insights from graph-based methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).

    More about this item

    Keywords

    Cryptocurrency; Sustainability; Correlation; Co-movement; Network analysis;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • F3 - International Economics - - International Finance
    • O3 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:89:y:2024:i:pb:p:863-912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.