IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v585y2022ics0378437121006749.html
   My bibliography  Save this article

An agent-based model of spread of a pandemic with validation using COVID-19 data from New York State

Author

Listed:
  • Datta, Amitava
  • Winkelstein, Peter
  • Sen, Surajit

Abstract

We introduce a novel agent based model where each agent carries an effective viral load that captures the instantaneous state of infection of the agent. We simulate the spread of a pandemic and subsequently validate it by using publicly available COVID-19 data. Our simulation tracks the temporal evolution of a virtual city or community of agents in terms of contracting infection, recovering asymptomatically, or getting hospitalized. The virtual community is divided into family groups with 2–6 individuals in each group. Agents interact with other agents in virtual public places like at grocery stores, on public transportation and in offices. We initially seed the virtual community with a very small number of infected individuals and then monitor the disease spread and hospitalization over a period of fifty days, which is a reasonable time-frame for the initial spread of a pandemic. An uninfected or asymptomatic agent is randomly selected from a random family group in each simulation step for visiting a random public space. Subsequently, an uninfected agent contracts infection if the public place is occupied by other infected agents. We have calibrated our simulation rounds according to the size of the population of the virtual community for simulating realistic exposure of agents to a contagion. Our simulation results are consistent with the publicly available hospitalization and ICU patient data from three distinct regions of varying sizes in New York state. Our model can predict the trend in epidemic spread and hospitalization from a set of simple parameters and could be potentially useful in predicting the disease evolution based on available data and observations about public behavior. Our simulations suggest that relaxing the social distancing measures may increase the hospitalization numbers by some 30% or more.

Suggested Citation

  • Datta, Amitava & Winkelstein, Peter & Sen, Surajit, 2022. "An agent-based model of spread of a pandemic with validation using COVID-19 data from New York State," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
  • Handle: RePEc:eee:phsmap:v:585:y:2022:i:c:s0378437121006749
    DOI: 10.1016/j.physa.2021.126401
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121006749
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126401?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernández-Villaverde, Jesús & Jones, Charles I., 2022. "Estimating and simulating a SIRD Model of COVID-19 for many countries, states, and cities," Journal of Economic Dynamics and Control, Elsevier, vol. 140(C).
    2. Joshua M. Epstein, 2009. "Modelling to contain pandemics," Nature, Nature, vol. 460(7256), pages 687-687, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandru Topîrceanu, 2023. "On the Impact of Quarantine Policies and Recurrence Rate in Epidemic Spreading Using a Spatial Agent-Based Model," Mathematics, MDPI, vol. 11(6), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G.J. Melman & A.K. Parlikad & E.A.B. Cameron, 2021. "Balancing scarce hospital resources during the COVID-19 pandemic using discrete-event simulation," Health Care Management Science, Springer, vol. 24(2), pages 356-374, June.
    2. David Baqaee & Emmanuel Farhi, 2020. "Nonlinear Production Networks with an Application to the Covid-19 Crisis," NBER Working Papers 27281, National Bureau of Economic Research, Inc.
    3. M. Hashem Pesaran & Cynthia Fan Yang, 2022. "Matching theory and evidence on Covid‐19 using a stochastic network SIR model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1204-1229, September.
    4. Nicola Fuchs-Schündeln & Dirk Krueger & André Kurmann & Etienne Lalé & Alexander Ludwig & Irina Popova, 2023. "The Fiscal and Welfare Effects of Policy Responses to the Covid-19 School Closures," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(1), pages 35-98, March.
    5. Bisin, Alberto & Moro, Andrea, 2022. "Spatial‐SIR with network structure and behavior: Lockdown rules and the Lucas critique," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 370-388.
    6. Talal Daghriri & Michael Proctor & Sarah Matthews, 2022. "Evolution of Select Epidemiological Modeling and the Rise of Population Sentiment Analysis: A Literature Review and COVID-19 Sentiment Illustration," IJERPH, MDPI, vol. 19(6), pages 1-20, March.
    7. Chen, Xiaowei & Chong, Wing Fung & Feng, Runhuan & Zhang, Linfeng, 2021. "Pandemic risk management: Resources contingency planning and allocation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 359-383.
    8. Andrew G. Atkeson & Karen A. Kopecky & Tao Zha, 2024. "Four Stylized Facts About Covid‐19," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 65(1), pages 3-42, February.
    9. Lazebnik, Teddy & Shami, Labib & Bunimovich-Mendrazitsky, Svetlana, 2023. "Intervention policy influence on the effect of epidemiological crisis on industry-level production through input–output networks," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    10. Harrison Hong & Neng Wang & Jinqiang Yang, 2020. "Implications of Stochastic Transmission Rates for Managing Pandemic Risks," NBER Working Papers 27218, National Bureau of Economic Research, Inc.
    11. Lin William Cong & Ke Tang & Bing Wang & Jingyuan Wang, 2021. "An AI-assisted Economic Model of Endogenous Mobility and Infectious Diseases: The Case of COVID-19 in the United States," Papers 2109.10009, arXiv.org.
    12. Hector Eduardo Roman & Fabrizio Croccolo, 2021. "Spreading of Infections on Network Models: Percolation Clusters and Random Trees," Mathematics, MDPI, vol. 9(23), pages 1-22, November.
    13. Nicolò Gatti & Beatrice Retali, 2021. "Fighting the spread of Covid-19 : was the Swiss lockdown worth it?," IdEP Economic Papers 2101, USI Università della Svizzera italiana.
    14. Pol Antràs & Stephen J. Redding & Esteban Rossi-Hansberg, 2023. "Globalization and Pandemics," American Economic Review, American Economic Association, vol. 113(4), pages 939-981, April.
    15. Viral Acharya & Zhengyang Jiang & Robert J. Richmond & Ernst-Ludwig von Thadden, 2020. "Divided We Fall: International Health and Trade Coordination During a Pandemic," CRC TR 224 Discussion Paper Series crctr224_2020_248, University of Bonn and University of Mannheim, Germany.
    16. Dizioli, Allan & Pinheiro, Roberto, 2021. "Information and inequality in the time of a pandemic," Journal of Economic Dynamics and Control, Elsevier, vol. 130(C).
    17. Attar, M. Aykut & Tekin-Koru, Ayça, 2022. "Latent social distancing: Identification, causes and consequences," Economic Systems, Elsevier, vol. 46(1).
    18. Jonas E. Arias & Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez & Minchul Shin, 2021. "Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy Trade-Offs," Working Papers 21-18, Federal Reserve Bank of Philadelphia.
    19. Lin Ma & Gil Shapira & Damien de Walque & Quy‐Toan Do & Jed Friedman & Andrei A. Levchenko, 2022. "The Intergenerational Mortality Trade‐Off Of Covid‐19 Lockdown Policies," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(3), pages 1427-1468, August.
    20. Nicola Borri & Francesco Drago & Chiara Santantonio & Francesco Sobbrio, 2021. "The “Great Lockdown”: Inactive workers and mortality by Covid‐19," Health Economics, John Wiley & Sons, Ltd., vol. 30(10), pages 2367-2382, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:585:y:2022:i:c:s0378437121006749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.