IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v577y2021ics0378437121003472.html
   My bibliography  Save this article

Adversarial link deception against the link prediction in complex networks

Author

Listed:
  • Jiang, Zhongyuan
  • Tang, Xiaoke
  • Zeng, Yong
  • Li, Jinku
  • Ma, Jianfeng

Abstract

Currently, the link prediction tool has been extensively used in kinds of complex networks for the use of friend, commodity, or service recommendations. However, many adversaries may maliciously or intentionally perturb a part of social links to deceive the link prediction method to suggest some unexpected missing links (referred to as targets) to users. In this work, from the attacker perspective, we propose to promote the prediction probability of given targets via adding a tiny number of new links into the network to deceive the common neighbor based link prediction method. We first define the link deception process as a similarity score maximizing problem. Secondly, we propose to use a greedy algorithm referred to as GreedyAdd to greedily adding a budget limited number of links into the network. Thirdly, considering the high time complexity of the GreedyAdd, we propose a heuristic link addition method referred to as HeuristicAdd to improve the computing efficiency. Finally, we do experiments on many real social graphs to confirm the effectiveness and efficiency of the HeuristicAdd method. The results show that the HeuristicAdd algorithm can mostly deceive the link prediction with less time consumptions than the GreedyAdd. This work considers the security problem of complex systems from a new perspective and has potential applications.

Suggested Citation

  • Jiang, Zhongyuan & Tang, Xiaoke & Zeng, Yong & Li, Jinku & Ma, Jianfeng, 2021. "Adversarial link deception against the link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
  • Handle: RePEc:eee:phsmap:v:577:y:2021:i:c:s0378437121003472
    DOI: 10.1016/j.physa.2021.126074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121003472
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jinlong Ma & Weizhan Han & Qing Guo & Zhenyong Wang & Shuai Zhang, 2016. "A link-adding strategy for transport efficiency of complex networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 27(05), pages 1-12, May.
    2. Shang, Ke-ke & Yan, Wei-sheng & Small, Michael, 2016. "Evolving networks—Using past structure to predict the future," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 455(C), pages 120-135.
    3. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    4. Zhongyuan Jiang & Mangui Liang & Dongchao Guo, 2011. "Enhancing Network Performance By Edge Addition," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 22(11), pages 1211-1226.
    5. Shang, Ke-ke & Small, Michael & Yan, Wei-sheng, 2017. "Fitness networks for real world systems via modified preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 49-60.
    6. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    7. Tao Zhou & Linyuan Lü & Yi-Cheng Zhang, 2009. "Predicting missing links via local information," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 623-630, October.
    8. Du, Wenbo & Zhang, Mingyuan & Ying, Wen & Perc, Matjaž & Tang, Ke & Cao, Xianbin & Wu, Dapeng, 2018. "The networked evolutionary algorithm: A network science perspective," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 33-43.
    9. Cui, Wei & Pu, Cunlai & Xu, Zhongqi & Cai, Shimin & Yang, Jian & Michaelson, Andrew, 2016. "Bounded link prediction in very large networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 202-214.
    10. Zhang, Xuejun & Pang, Wenbo & Xia, Yongxiang, 2018. "An intermediary probability model for link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 902-912.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Likang & Zheng, Haoyang & Bian, Tian & Deng, Yong, 2017. "An evidential link prediction method and link predictability based on Shannon entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 699-712.
    2. Yin, Likang & Deng, Yong, 2018. "Toward uncertainty of weighted networks: An entropy-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 176-186.
    3. Charikhi, Mourad, 2024. "Association of the PageRank algorithm with similarity-based methods for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    4. Xia, Yongxiang & Pang, Wenbo & Zhang, Xuejun, 2021. "Mining relationships between performance of link prediction algorithms and network structure," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    5. Rafiee, Samira & Salavati, Chiman & Abdollahpouri, Alireza, 2020. "CNDP: Link prediction based on common neighbors degree penalization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    6. Assouli, Nora & Benahmed, Khelifa & Gasbaoui, Brahim, 2021. "How to predict crime — informatics-inspired approach from link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    7. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
    8. Chen, Ling-Jiao & Zhang, Zi-Ke & Liu, Jin-Hu & Gao, Jian & Zhou, Tao, 2017. "A vertex similarity index for better personalized recommendation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 607-615.
    9. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    10. Andreas Spitz & Anna Gimmler & Thorsten Stoeck & Katharina Anna Zweig & Emőke-Ágnes Horvát, 2016. "Assessing Low-Intensity Relationships in Complex Networks," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-17, April.
    11. Liu, Chuang & Zhou, Wei-Xing, 2012. "Heterogeneity in initial resource configurations improves a network-based hybrid recommendation algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5704-5711.
    12. Shenshen Bai & Longjie Li & Jianjun Cheng & Shijin Xu & Xiaoyun Chen, 2018. "Predicting Missing Links Based on a New Triangle Structure," Complexity, Hindawi, vol. 2018, pages 1-11, December.
    13. Qiaoran Yang & Zhiliang Dong & Yichi Zhang & Man Li & Ziyi Liang & Chao Ding, 2021. "Who Will Establish New Trade Relations? Looking for Potential Relationship in International Nickel Trade," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    14. Weihua Lei & Luiz G. A. Alves & Luís A. Nunes Amaral, 2022. "Forecasting the evolution of fast-changing transportation networks using machine learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Wang, Zuxi & Wu, Yao & Li, Qingguang & Jin, Fengdong & Xiong, Wei, 2016. "Link prediction based on hyperbolic mapping with community structure for complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 609-623.
    16. Lee, Yan-Li & Zhou, Tao, 2021. "Collaborative filtering approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    17. Moradabadi, Behnaz & Meybodi, Mohammad Reza, 2016. "Link prediction based on temporal similarity metrics using continuous action set learning automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 361-373.
    18. Yichi Zhang & Zhiliang Dong & Sen Liu & Peixiang Jiang & Cuizhi Zhang & Chao Ding, 2021. "Forecast of International Trade of Lithium Carbonate Products in Importing Countries and Small-Scale Exporting Countries," Sustainability, MDPI, vol. 13(3), pages 1-23, January.
    19. Peng Liu & Liang Gui & Huirong Wang & Muhammad Riaz, 2022. "A Two-Stage Deep-Learning Model for Link Prediction Based on Network Structure and Node Attributes," Sustainability, MDPI, vol. 14(23), pages 1-15, December.
    20. Liu, Jin-Hu & Zhu, Yu-Xiao & Zhou, Tao, 2016. "Improving personalized link prediction by hybrid diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 199-207.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:577:y:2021:i:c:s0378437121003472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.