IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v577y2021ics0378437121003459.html
   My bibliography  Save this article

Chase-Escape percolation on the 2D square lattice

Author

Listed:
  • Kumar, Aanjaneya
  • Grassberger, Peter
  • Dhar, Deepak

Abstract

Chase-escape percolation is a variation of the standard epidemic spread models. In this model, each site can be in one of three states: unoccupied, occupied by a single prey, or occupied by a single predator. Prey particles spread to neighboring empty sites at rate p, and predator particles spread only to neighboring sites occupied by prey particles at rate 1, killing the prey particle that existed at that site. It was found that the prey can survive forever with non-zero probability, if p>pc with pc<1. Earlier simulations showed that pc is very close to 1∕2. Using Monte Carlo simulations in D=2, we estimate the value of pc to be 0.49451±0.00001 and the critical exponents are consistent with the undirected percolation universality class. We check that at pc, the correlation functions at large length scales are rotationally invariant. We define a discrete-time parallel-update version of the model, which brings out the relation between chase-escape and undirected bond percolation. We further show that for all p

Suggested Citation

  • Kumar, Aanjaneya & Grassberger, Peter & Dhar, Deepak, 2021. "Chase-Escape percolation on the 2D square lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
  • Handle: RePEc:eee:phsmap:v:577:y:2021:i:c:s0378437121003459
    DOI: 10.1016/j.physa.2021.126072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121003459
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bartlomiej Waclaw & Ivana Bozic & Meredith E. Pittman & Ralph H. Hruban & Bert Vogelstein & Martin A. Nowak, 2015. "A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity," Nature, Nature, vol. 525(7568), pages 261-264, September.
    2. de Souza, David R. & Tomé, Tânia, 2010. "Stochastic lattice gas model describing the dynamics of the SIRS epidemic process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(5), pages 1142-1150.
    3. Nekovee, M. & Moreno, Y. & Bianconi, G. & Marsili, M., 2007. "Theory of rumour spreading in complex social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 457-470.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosni, Adil Imad Eddine & Li, Kan & Ahmad, Sadique, 2020. "Analysis of the impact of online social networks addiction on the propagation of rumors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    2. Jia, Pingqi & Wang, Chao & Zhang, Gaoyu & Ma, Jianfeng, 2019. "A rumor spreading model based on two propagation channels in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 342-353.
    3. Xuefeng Yue & Liangan Huo, 2022. "Analysis of the Stability and Optimal Control Strategy for an ISCR Rumor Propagation Model with Saturated Incidence and Time Delay on a Scale-Free Network," Mathematics, MDPI, vol. 10(20), pages 1-20, October.
    4. Zan, Yongli & Wu, Jianliang & Li, Ping & Yu, Qinglin, 2014. "SICR rumor spreading model in complex networks: Counterattack and self-resistance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 159-170.
    5. Zhang, Yaming & Su, Yanyuan & Weigang, Li & Liu, Haiou, 2019. "Interacting model of rumor propagation and behavior spreading in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 168-177.
    6. Fink, Christian G. & Fullin, Kelly & Gutierrez, Guillermo & Omodt, Nathan & Zinnecker, Sydney & Sprint, Gina & McCulloch, Sean, 2023. "A centrality measure for quantifying spread on weighted, directed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    7. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    8. Huayan Pei & Guanghui Yan & Yaning Huang, 2023. "Impact of contact rate on epidemic spreading in complex networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(4), pages 1-7, April.
    9. Huo, Liang’an & Jiang, Jiehui & Gong, Sixing & He, Bing, 2016. "Dynamical behavior of a rumor transmission model with Holling-type II functional response in emergency event," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 228-240.
    10. Kotnis, Bhushan & Kuri, Joy, 2016. "Cost effective campaigning in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 670-681.
    11. Nizamani, Sarwat & Memon, Nasrullah & Galam, Serge, 2014. "From public outrage to the burst of public violence: An epidemic-like model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 620-630.
    12. J. J. Esquivel-Gómez & J. G. Barajas-Ramírez, 2024. "Rapid disease spread on dense networks with power-law topology," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(5), pages 1-10, May.
    13. Serhii Aif & Nico Appold & Lucas Kampman & Oskar Hallatschek & Jona Kayser, 2022. "Evolutionary rescue of resistant mutants is governed by a balance between radial expansion and selection in compact populations," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Qian, Zhen & Tang, Shaoting & Zhang, Xiao & Zheng, Zhiming, 2015. "The independent spreaders involved SIR Rumor model in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 95-102.
    15. Guilherme Ferraz de Arruda & Lucas G. S. Jeub & Angélica S. Mata & Francisco A. Rodrigues & Yamir Moreno, 2022. "From subcritical behavior to a correlation-induced transition in rumor models," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Huo, Liang’an & Song, Naixiang, 2016. "Dynamical interplay between the dissemination of scientific knowledge and rumor spreading in emergency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 73-84.
    17. Zhang, Jun-li & Fu, Yan-jun & Cheng, Lan & Yang, Yun-yun, 2021. "Identifying multiple influential spreaders based on maximum connected component decomposition method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    18. Almiala, Into & Aalto, Henrik & Kuikka, Vesa, 2023. "Influence spreading model for partial breakthrough effects on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    19. Isham, Valerie & Harden, Simon & Nekovee, Maziar, 2010. "Stochastic epidemics and rumours on finite random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 561-576.
    20. Maltz, Alberto & Fabricius, Gabriel, 2016. "SIR model with local and global infective contacts: A deterministic approach and applications," Theoretical Population Biology, Elsevier, vol. 112(C), pages 70-79.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:577:y:2021:i:c:s0378437121003459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.