IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v574y2021ics0378437121002442.html
   My bibliography  Save this article

Bifurcation control of optimal velocity model through anticipated effect and response time-delay feedback methods

Author

Listed:
  • Guan, Xueyi
  • Cheng, Rongjun
  • Ge, Hongxia

Abstract

In order to further improve the adaptability of the optimal velocity model (OVM) in actual traffic flow, the paper introduces a feedback control with considering both driver’s anticipated time and response time-delay. Through the linear analysis and bifurcation analysis, we obtain stability conditions and the balance point of dual time-delay control OVM. Aiming at restraining the Hopf bifurcation caused by small disturbance, a bifurcated controller is designed to reduce the number of unstable eigenvalues of the characteristic equation and determine the definite stability interval under the combination of anticipation and response time-delay. Then followed by the simulated verification for more vehicles, the simulation results show that the controller can effectively suppress traffic congestion without changing the balance point, and significantly improve traffic efficiency and traffic stability. In addition, utilizing NGSIM data to calibrate the controlled model so as to explore the feasibility and advantages of the model.

Suggested Citation

  • Guan, Xueyi & Cheng, Rongjun & Ge, Hongxia, 2021. "Bifurcation control of optimal velocity model through anticipated effect and response time-delay feedback methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
  • Handle: RePEc:eee:phsmap:v:574:y:2021:i:c:s0378437121002442
    DOI: 10.1016/j.physa.2021.125972
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121002442
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.125972?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Sheng & Wang, Dian-Hai & Huang, Zhi-Yi & Tao, Peng-Fei, 2011. "Visual angle model for car-following theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 1931-1940.
    2. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2019. "An extended car-following model considering driver’s memory and average speed of preceding vehicles with control strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 752-761.
    3. Zhang, Yicai & Xue, Yu & Zhang, Peng & Fan, Deli & di He, Hong, 2019. "Bifurcation analysis of traffic flow through an improved car-following model considering the time-delayed velocity difference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 133-140.
    4. Zhang, H. M., 2003. "Driver memory, traffic viscosity and a viscous vehicular traffic flow model," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 27-41, January.
    5. Sasaki, Masashi & Nagatani, Takashi, 2003. "Transition and saturation of traffic flow controlled by traffic lights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 325(3), pages 531-546.
    6. G. F. Newell, 1961. "Nonlinear Effects in the Dynamics of Car Following," Operations Research, INFORMS, vol. 9(2), pages 209-229, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Haoming & Xiao, Min & Lu, Yunxiang & Wang, Zhen & Tao, Binbin, 2023. "Control of tipping in a small-world network model via a novel dynamic delayed feedback scheme," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    2. Lixia Duan & Shuangshuang Fan & Danyang Liu & Zhonghe He, 2022. "Two-parameter bifurcation and energy consumption analysis of the macro traffic flow model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(12), pages 1-12, December.
    3. Wen Huan Ai & Ming Ming Wang & Da Wei Liu, 2024. "Saddle-node bifurcation control of macroscopic traffic flow model considering vehicle braking effect," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(5), pages 1-13, May.
    4. Peng, Guanghan & Luo, Chunli & Zhao, Hongzhuan & Tan, Huili, 2024. "Phase transitions of dual-lane lattice model incorporating cyber-attacks on lane change involving inflow and outflow under connected vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yifan Pan & Yongjiang Wang & Baobin Miao & Rongjun Cheng, 2022. "Stabilization Strategy of a Novel Car-Following Model with Time Delay and Memory Effect of the Driver," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    2. Yu, Shaowei & Huang, Mengxing & Ren, Jia & Shi, Zhongke, 2016. "An improved car-following model considering velocity fluctuation of the immediately ahead car," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 1-17.
    3. Zhang, Xiangzhou & Shi, Zhongke & Yang, Qiaoli & An, Xiaodong, 2024. "Impacts of visuo-spatial working memory on the dynamic performance and safety of car-following behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    4. Jiang, Nan & Yu, Bin & Cao, Feng & Dang, Pengfei & Cui, Shaohua, 2021. "An extended visual angle car-following model considering the vehicle types in the adjacent lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    5. Kun Zhang & Yu Xue & Hao-Jie Luo & Qiang Zhang & Yuan Tang & Bing-Ling Cen, 2023. "Cyber-attacks on the optimal velocity and its variation by bifurcation analyses," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(12), pages 1-19, December.
    6. Jin, Sheng & Qu, Xiaobo & Zhou, Dan & Xu, Cheng & Ma, Dongfang & Wang, Dianhai, 2015. "Estimating cycleway capacity and bicycle equivalent unit for electric bicycles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 225-248.
    7. Li, Shihao & Cheng, Rongjun & Ge, Hongxia, 2020. "An improved car-following model considering electronic throttle dynamics and delayed velocity difference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    8. Cui, Bo-Yuan & Zhang, Geng & Ma, Qing-Lu, 2021. "A stable velocity control strategy for a discrete-time car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    9. Sun, Lu & Jafaripournimchahi, Ammar & Kornhauser, Alain & Hu, Wushen, 2020. "A new higher-order viscous continuum traffic flow model considering driver memory in the era of autonomous and connected vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    10. Lixia Duan & Shuangshuang Fan & Danyang Liu & Zhonghe He, 2022. "Two-parameter bifurcation and energy consumption analysis of the macro traffic flow model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(12), pages 1-12, December.
    11. Peng, Guanghan & Jia, Teti & Kuang, Hua & Tan, Huili, 2022. "Energy consumption in a new lattice hydrodynamic model based on the delayed effect of collaborative information transmission under V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    12. Pei, Xin & Pan, Yan & Wang, Haixin & Wong, S.C. & Choi, Keechoo, 2016. "Empirical evidence and stability analysis of the linear car-following model with gamma-distributed memory effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 311-323.
    13. Yu, Bin & Zhou, Huixin & Wang, Lin & Wang, Zirui & Cui, Shaohua, 2021. "An extended two-lane car-following model considering the influence of heterogeneous speed information on drivers with different characteristics under honk environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    14. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2019. "A car-following model considering the effect of electronic throttle opening angle over the curved road," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    15. Ma, Guangyi & Li, Keping, 2024. "Analysis and simulation of vehicle following behavior with consideration of multiple time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    16. Zhang, Xiangzhou & Shi, Zhongke & Yu, Shaowei & Ma, Lijing, 2023. "A new car-following model considering driver’s desired visual angle on sharp curves," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    17. Maosheng Li & Jing Fan & Jaeyoung Lee, 2023. "Modeling Car-Following Behavior with Different Acceptable Safety Levels," Sustainability, MDPI, vol. 15(7), pages 1-23, April.
    18. Jia, Yanfeng & Qu, Dayi & Song, Hui & Wang, Tao & Zhao, Zixu, 2022. "Car-following characteristics and model of connected autonomous vehicles based on safe potential field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    19. Zhang, Xiangzhou & Shi, Zhongke & Chen, Jianzhong & Ma, lijing, 2023. "A bi-directional visual angle car-following model considering collision sensitivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    20. Jin, Wen-Long, 2016. "On the equivalence between continuum and car-following models of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 543-559.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:574:y:2021:i:c:s0378437121002442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.