IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v568y2021ics0378437120309948.html
   My bibliography  Save this article

Spatial–temporal differences in operational performance of urban trunk roads based on TPI data: The case of Qingdao

Author

Listed:
  • Sun, Qiuxia
  • Zhang, Yu
  • Sun, Lu
  • Li, Qing
  • Gao, Peng
  • He, Hao

Abstract

The purpose of this study is to classify and analyze the traffic performance characteristics of urban trunk roads. It can help travelers effectively avoid peak hours and crowded routes, and traffic managers formulate some refined management and control on roads. This paper extracts the operating characteristics of the trunk roads on macro level by analyzing the Traffic Performance Index (TPI) data. The trunk roads are divided into three types using the agglomerative hierarchical clustering algorithm. According to the research of the spatial–temporal principles and differences of various types in traffic performance, the links with frequent traffic jams are identified, and the mechanism of the different traffic conditions is illustrated. It can be concluded that the trunk road is good conditions in most cases. On weekdays, there are two obvious peak times every day. On weekends, TPI data shows that there is no obvious peak time, and the overall road traffic conditions on weekends are better than those on weekdays. In addition, there are significant differences in the change trajectory of the TPI data and spatial distribution of various types of trunk roads. The roads with frequent traffic jams mainly come from the first and third type.

Suggested Citation

  • Sun, Qiuxia & Zhang, Yu & Sun, Lu & Li, Qing & Gao, Peng & He, Hao, 2021. "Spatial–temporal differences in operational performance of urban trunk roads based on TPI data: The case of Qingdao," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 568(C).
  • Handle: RePEc:eee:phsmap:v:568:y:2021:i:c:s0378437120309948
    DOI: 10.1016/j.physa.2020.125696
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120309948
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125696?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2017. "Dynamic clustering and propagation of congestion in heterogeneously congested urban traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 193-211.
    2. Sun, Qiuxia & Sun, Yixin & Sun, Lu & Li, Qing & Zhao, Jianli & Zhang, Yu & He, Hao, 2019. "Research on traffic congestion characteristics of city business circles based on TPI data: The case of Qingdao, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    3. Guo, Yajuan & Yang, Licai & Hao, Shenxue & Gao, Jun, 2019. "Dynamic identification of urban traffic congestion warning communities in heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 98-111.
    4. Wen, Tzai-Hung & Chin, Wei-Chien-Benny & Lai, Pei-Chun, 2017. "Understanding the topological characteristics and flow complexity of urban traffic congestion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 166-177.
    5. Zhang, Liye & Meng, Qiang & Fang Fwa, Tien, 2019. "Big AIS data based spatial-temporal analyses of ship traffic in Singapore port waters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 287-304.
    6. Bhattacharjee, Sutapa & Goetz, Andrew R., 2012. "Impact of light rail on traffic congestion in Denver," Journal of Transport Geography, Elsevier, vol. 22(C), pages 262-270.
    7. Xie, Litian & Olszewski, Piotr, 2011. "Modelling the effects of road pricing on traffic using ERP traffic data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 512-522, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin, Xuri & Liu, Kezhong & Loughney, Sean & Wang, Jin & Li, Huanhuan & Ekere, Nduka & Yang, Zaili, 2023. "Multi-scale collision risk estimation for maritime traffic in complex port waters," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    2. Xin, Xuri & Liu, Kezhong & Loughney, Sean & Wang, Jin & Yang, Zaili, 2023. "Maritime traffic clustering to capture high-risk multi-ship encounters in complex waters," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Gu, Xiaoning & Chen, Chao & Feng, Tao & Yao, Baozhen, 2024. "A novel regional traffic control strategy for mixed traffic system with the construction of congestion warning communities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    4. Ding Luo & Oded Cats & Hans Lint, 2020. "Can passenger flow distribution be estimated solely based on network properties in public transport systems?," Transportation, Springer, vol. 47(6), pages 2757-2776, December.
    5. Jiang, Meizhi & Lu, Jing, 2020. "The analysis of maritime piracy occurred in Southeast Asia by using Bayesian network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 139(C).
    6. Lee, Shin S. & Senior, Martyn L., 2013. "Do light rail services discourage car ownership and use? Evidence from Census data for four English cities," Journal of Transport Geography, Elsevier, vol. 29(C), pages 11-23.
    7. Ali Enes Dingil & Federico Rupi & Domokos Esztergár-Kiss, 2021. "An Integrative Review of Socio-Technical Factors Influencing Travel Decision-Making and Urban Transport Performance," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    8. Zheng, Xiangyu & Huang, Ning & Bai, Ya-nan & Zhang, Xin, 2023. "A traffic-fractal-element-based congestion model considering the uneven distribution of road traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    9. Jinxiao Duan & Guanwen Zeng & Nimrod Serok & Daqing Li & Efrat Blumenfeld Lieberthal & Hai-Jun Huang & Shlomo Havlin, 2023. "Spatiotemporal dynamics of traffic bottlenecks yields an early signal of heavy congestions," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Yang, Lei & Yin, Suwan & Han, Ke & Haddad, Jack & Hu, Minghua, 2017. "Fundamental diagrams of airport surface traffic: Models and applications," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 29-51.
    11. Rouhani, Omid M. & Knittel, Christopher R. & Niemeier, Debbie, 2014. "Road Supply in Central London: Addition of an Ignored Social Cost," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 53(1).
    12. Eisuke Watanabe & Ryuichi Shibasaki, 2023. "Extraction of Bunkering Services from Automatic Identification System Data and Their International Comparisons," Sustainability, MDPI, vol. 15(24), pages 1-19, December.
    13. Xiangyang Cao & Bingzhong Zhou & Qiang Tang & Jiaqi Li & Donghui Shi, 2018. "Urban Wasteful Transport and Its Estimation Methods," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
    14. Chu, Singfat, 2015. "Car restraint policies and mileage in Singapore," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 404-412.
    15. Jiao Yao & Jiaping He & Yujie Bao & Jiayang Li & Yin Han, 2022. "Study on Freeway Congestion Propagation in Foggy Environment Based on CA-SIR Model," Sustainability, MDPI, vol. 14(23), pages 1-18, December.
    16. Yang, Zhisen & Wan, Chengpeng & Yu, Qing & Yin, Jingbo & Yang, Zaili, 2023. "A machine learning-based Bayesian model for predicting the duration of ship detention in PSC inspection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    17. Sugrue, Dennis & Adriaens, Peter, 2021. "A data fusion approach to predict shipping efficiency for bulk carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    18. Dakic, Igor & Yang, Kaidi & Menendez, Monica & Chow, Joseph Y.J., 2021. "On the design of an optimal flexible bus dispatching system with modular bus units: Using the three-dimensional macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 38-59.
    19. Tang, Siyi & Zheng, Fangfang & Zheng, Nan & Liu, Xiaobo, 2024. "An efficient multi-modal urban transportation network partitioning approach for three-dimensional macroscopic fundamental diagram," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    20. Jin, Lianjie & Chen, Jing & Chen, Zilin & Sun, Xiangjun & Yu, Bin, 2022. "Impact of COVID-19 on China's international liner shipping network based on AIS data," Transport Policy, Elsevier, vol. 121(C), pages 90-99.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:568:y:2021:i:c:s0378437120309948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.