IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v39y2012i1p81-96.html
   My bibliography  Save this article

Earthquakes occurrences estimation through a parametric semi-Markov approach

Author

Listed:
  • Giovanni Masala

Abstract

The estimation of earthquakes’ occurrences prediction in seismic areas is a challenging problem in seismology and earthquake engineering. Indeed, the prevention and the quantification of possible damage provoked by destructive earthquakes are directly linked to this kind of prevision. In our paper, we adopt a parametric semi-Markov approach. This model assumes that a sequence of earthquakes is seen as a Markov process and besides it permits to take into consideration the more realistic assumption of events’ dependence in space and time. The elapsed time between two consecutive events is modeled as a general Weibull distribution. We determine then the transition probabilities and the so-called crossing states probabilities. We conclude then with a Monte Carlo simulation and the model is validated through a large database containing real data.

Suggested Citation

  • Giovanni Masala, 2012. "Earthquakes occurrences estimation through a parametric semi-Markov approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(1), pages 81-96, March.
  • Handle: RePEc:taf:japsta:v:39:y:2012:i:1:p:81-96
    DOI: 10.1080/02664763.2011.578617
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2011.578617
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2011.578617?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Votsi, I. & Limnios, N. & Tsaklidis, G. & Papadimitriou, E., 2013. "Hidden Markov models revealing the stress field underlying the earthquake generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2868-2885.
    2. Danisman, Ozgur & Uzunoglu Kocer, Umay, 2021. "Hidden Markov models with binary dependence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:39:y:2012:i:1:p:81-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.