IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2201.09790.html
   My bibliography  Save this paper

Linear Laws of Markov Chains with an Application for Anomaly Detection in Bitcoin Prices

Author

Listed:
  • Marcell T. Kurbucz
  • P'eter P'osfay
  • Antal Jakov'ac

Abstract

The goals of this paper are twofold: (1) to present a new method that is able to find linear laws governing the time evolution of Markov chains and (2) to apply this method for anomaly detection in Bitcoin prices. To accomplish these goals, first, the linear laws of Markov chains are derived by using the time embedding of their (categorical) autocorrelation function. Then, a binary series is generated from the first difference of Bitcoin exchange rate (against the United States Dollar). Finally, the minimum number of parameters describing the linear laws of this series is identified through stepped time windows. Based on the results, linear laws typically became more complex (containing an additional third parameter that indicates hidden Markov property) in two periods: before the crash of cryptocurrency markets inducted by the COVID-19 pandemic (12 March 2020), and before the record-breaking surge in the price of Bitcoin (Q4 2020 - Q1 2021). In addition, the locally high values of this third parameter are often related to short-term price peaks, which suggests price manipulation.

Suggested Citation

  • Marcell T. Kurbucz & P'eter P'osfay & Antal Jakov'ac, 2022. "Linear Laws of Markov Chains with an Application for Anomaly Detection in Bitcoin Prices," Papers 2201.09790, arXiv.org.
  • Handle: RePEc:arx:papers:2201.09790
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2201.09790
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Danisman, Ozgur & Uzunoglu Kocer, Umay, 2021. "Hidden Markov models with binary dependence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge Antunes & Luis Alberiko Gil-Alana & Rossana Riccardi & Yong Tan & Peter Wanke, 2022. "Unveiling endogeneity and temporal dependence in energy prices and demand in Iberian countries: a stochastic hidden Markov model approach," Annals of Operations Research, Springer, vol. 313(1), pages 191-229, June.
    2. Gámiz, M.L. & Navas-Gómez, F. & Raya-Miranda, R. & Segovia-García, M.C., 2023. "Dynamic reliability and sensitivity analysis based on HMM models with Markovian signal process," Reliability Engineering and System Safety, Elsevier, vol. 239(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2201.09790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.