IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v554y2020ics0378437120303447.html
   My bibliography  Save this article

Baffle and geometry effects on nanofluid forced convection over forward- and backward-facing​ steps channel by means of lattice Boltzmann method

Author

Listed:
  • Ma, Yuan
  • Mohebbi, Rasul
  • Rashidi, Mohammad Mehdi
  • Yang, Zhigang
  • Fang, Yuhao

Abstract

In this study, we present a numerical simulation of MWCNT-Fe3O4/water hybrid nanofluid forced convection heat transfer over the forward- and backward-facing steps channel having a baffle fixed on its top wall. A FORTRAN’s homemade code based the lattice Boltzmann method (LBM) is used here. The effects of the Reynolds number (25 ≤Re≤ 100), the volume fraction of nanoparticles (0 ≤ϕ≤ 0.003), the position of baffle (3 ≤X2≤ 7), the length of baffle (0 ≤h≤ 1.5) and the geometry parameter (2 ≤X1≤ 4) on flow pattern and heat transfer characteristics are provided a deep insight. The results indicate that the average Nusselt number is an increasing function of Re and ϕ. The baffle has a significant effect on the flow pattern and heat transfer characteristics. When the length of the baffle increases, the recirculation region behind the backward-facing step shrinks. The average Nusselt number increases by increasing the length of the baffle or moving the baffle towards the backward-facing step.

Suggested Citation

  • Ma, Yuan & Mohebbi, Rasul & Rashidi, Mohammad Mehdi & Yang, Zhigang & Fang, Yuhao, 2020. "Baffle and geometry effects on nanofluid forced convection over forward- and backward-facing​ steps channel by means of lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
  • Handle: RePEc:eee:phsmap:v:554:y:2020:i:c:s0378437120303447
    DOI: 10.1016/j.physa.2020.124696
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120303447
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124696?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, W.A. & Xi, G.N., 2017. "Geometry effect on flow fluctuation and heat transfer in unsteady forced convection over backward and forward facing steps," Energy, Elsevier, vol. 132(C), pages 49-56.
    2. Safaei, Mohammad Reza & Karimipour, Arash & Abdollahi, Ali & Nguyen, Truong Khang, 2018. "The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 515-535.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nur Adilah Liyana Aladdin & Norfifah Bachok, 2021. "Duality Solutions in Hydromagnetic Flow of SWCNT-MWCNT/Water Hybrid Nanofluid over Vertical Moving Slender Needle," Mathematics, MDPI, vol. 9(22), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hajmohammadi, M.R. & Haji Molla Ali Tork, M.H., 2019. "Effects of the magnetic field on the cylindrical Couette flow and heat transfer of a nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 234-245.
    2. Bahrami, Mehrdad & Akbari, Mohammad & Bagherzadeh, Seyed Amin & Karimipour, Arash & Afrand, Masoud & Goodarzi, Marjan, 2019. "Develop 24 dissimilar ANNs by suitable architectures & training algorithms via sensitivity analysis to better statistical presentation: Measure MSEs between targets & ANN for Fe–CuO/Eg–Water nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 159-168.
    3. Ma, Yulin & Shahsavar, Amin & Moradi, Iman & Rostami, Sara & Moradikazerouni, Alireza & Yarmand, Hooman & Zulkifli, Nurin Wahidah Binti Mohd, 2021. "Using finite volume method for simulating the natural convective heat transfer of nano-fluid flow inside an inclined enclosure with conductive walls in the presence of a constant temperature heat sour," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    4. Alsarraf, Jalal & Moradikazerouni, Alireza & Shahsavar, Amin & Afrand, Masoud & Salehipour, Hamzeh & Tran, Minh Duc, 2019. "Hydrothermal analysis of turbulent boehmite alumina nanofluid flow with different nanoparticle shapes in a minichannel heat exchanger using two-phase mixture model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 275-288.
    5. Zhu, Yanlong & Lu, Jie & Yuan, Yuan & Wang, Fuqiang & Tan, Heping, 2020. "Effect of radiation on the effective thermal conductivity of encapsulated capsules containing high-temperature phase change materials," Renewable Energy, Elsevier, vol. 160(C), pages 676-685.
    6. Nafchi, Peyman Mirzakhani & Karimipour, Arash & Afrand, Masoud, 2019. "The evaluation on a new non-Newtonian hybrid mixture composed of TiO2/ZnO/EG to present a statistical approach of power law for its rheological and thermal properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 1-18.
    7. Ma, Yuan & Mohebbi, Rasul & Rashidi, M.M. & Yang, Zhigang & Sheremet, Mikhail, 2020. "Nanoliquid thermal convection in I-shaped multiple-pipe heat exchanger under magnetic field influence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    8. Mahyari, Amirhossein Ansari & Karimipour, Arash & Afrand, Masoud, 2019. "Effects of dispersed added Graphene Oxide-Silicon Carbide nanoparticles to present a statistical formulation for the mixture thermal properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 98-112.
    9. Gilani, Hooman Azad & Hoseinzadeh, Siamak & Esmaeilion, Farbod & Memon, Saim & Garcia, Davide Astiaso & Assad, Mamdouh El Haj, 2022. "A solar thermal driven ORC-VFR system employed in subtropical Mediterranean climatic building," Energy, Elsevier, vol. 250(C).
    10. Rasti, Ehsan & Talebi, Farhad & Mazaheri, Kiumars, 2019. "Improvement of drag reduction prediction in viscoelastic pipe flows using proper low-Reynolds k-ε turbulence models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 412-422.
    11. Sheikholeslami, M. & Jafaryar, M. & Shafee, Ahmad & Li, Zhixiong, 2019. "Simulation of nanoparticles application for expediting melting of PCM inside a finned enclosure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 544-556.
    12. Li, Zhixiong & Sheikholeslami, M. & Ayani, M. & Shamlooei, M. & Shafee, Ahmad & Waly, Mohamed Ibrahim & Tlili, I., 2019. "Acceleration of solidification process by means of nanoparticles in an energy storage enclosure using numerical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 540-552.
    13. Peng, Yeping & Parsian, Amir & Khodadadi, Hossein & Akbari, Mohammad & Ghani, Kamal & Goodarzi, Marjan & Bach, Quang-Vu, 2020. "Develop optimal network topology of artificial neural network (AONN) to predict the hybrid nanofluids thermal conductivity according to the empirical data of Al2O3 – Cu nanoparticles dispersed in ethy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    14. Alnaqi, Abdulwahab A. & Sayyad Tavoos Hal, Sina & Aghaei, Alireza & Soltanimehr, Mehdi & Afrand, Masoud & Nguyen, Truong Khang, 2019. "Predicting the effect of functionalized multi-walled carbon nanotubes on thermal performance factor of water under various Reynolds number using artificial neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 493-500.
    15. Shahsavar, Amin & Bagherzadeh, Seyed Amin & Mahmoudi, Boshra & Hajizadeh, Ahmad & Afrand, Masoud & Nguyen, Truong Khang, 2019. "Robust Weighted Least Squares Support Vector Regression algorithm to estimate the nanofluid thermal properties of water/graphene Oxide–Silicon carbide mixture," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1418-1428.
    16. Al-Rashed, Abdullah A.A.A. & Ranjbarzadeh, Ramin & Aghakhani, Saeed & Soltanimehr, Mehdi & Afrand, Masoud & Nguyen, Truong Khang, 2019. "Entropy generation of boehmite alumina nanofluid flow through a minichannel heat exchanger considering nanoparticle shape effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 724-736.
    17. Karimipour, Arash & Bagherzadeh, Seyed Amin & Taghipour, Abdolmajid & Abdollahi, Ali & Safaei, Mohammad Reza, 2019. "A novel nonlinear regression model of SVR as a substitute for ANN to predict conductivity of MWCNT-CuO/water hybrid nanofluid based on empirical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 89-97.
    18. Sheikholeslami, M. & Keramati, Hadi & Shafee, Ahmad & Li, Zhixiong & Alawad, Omer A. & Tlili, I., 2019. "Nanofluid MHD forced convection heat transfer around the elliptic obstacle inside a permeable lid drive 3D enclosure considering lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 87-104.
    19. Alipour, Pedram & Toghraie, Davood & Karimipour, Arash, 2019. "Investigation the atomic arrangement and stability of the fluid inside a rough nanochannel in both presence and absence of different roughness by using of accurate nano scale simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 639-660.
    20. Khan, Masood & Hafeez, Abdul & Ahmed, Jawad, 2021. "Impacts of non-linear radiation and activation energy on the axisymmetric rotating flow of Oldroyd-B fluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:554:y:2020:i:c:s0378437120303447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.