IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v523y2019icp87-104.html
   My bibliography  Save this article

Nanofluid MHD forced convection heat transfer around the elliptic obstacle inside a permeable lid drive 3D enclosure considering lattice Boltzmann method

Author

Listed:
  • Sheikholeslami, M.
  • Keramati, Hadi
  • Shafee, Ahmad
  • Li, Zhixiong
  • Alawad, Omer A.
  • Tlili, I.

Abstract

In current article, forced convection of aluminum oxide-H2O nanofluid within a permeable non-Darcy 3D domain with a local elliptic heater of constant temperature in appearance of uniform magnetic field was scrutinized. Local elliptic heater of constant high temperature is placed in the center of cavity. Governing equations formulated using Brownian motion impact for nanofluid properties have been solved by lattice Boltzmann method. Influences of permeability, Reynolds number and Lorentz on alumina hydrothermal behavior have been reported. Obtained outputs have proved the growth of the Nusselt number with the lid velocity and permeability of domain, but Nu declines with the Lorentz forces. Conduction improves with augment of magnetic forces.

Suggested Citation

  • Sheikholeslami, M. & Keramati, Hadi & Shafee, Ahmad & Li, Zhixiong & Alawad, Omer A. & Tlili, I., 2019. "Nanofluid MHD forced convection heat transfer around the elliptic obstacle inside a permeable lid drive 3D enclosure considering lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 87-104.
  • Handle: RePEc:eee:phsmap:v:523:y:2019:i:c:p:87-104
    DOI: 10.1016/j.physa.2019.02.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119301670
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.02.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kamiński, Marcin & Ossowski, Rafał Leszek, 2014. "Prediction of the effective parameters of the nanofluids using the generalized stochastic perturbation method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 10-22.
    2. Arabkoohsar, A. & Andresen, G.B., 2017. "Thermodynamics and economic performance comparison of three high-temperature hot rock cavern based energy storage concepts," Energy, Elsevier, vol. 132(C), pages 12-21.
    3. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2018. "Long-time behavior of a stochastic logistic equation with distributed delay and nonlinear perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 289-304.
    4. Safaei, Mohammad Reza & Karimipour, Arash & Abdollahi, Ali & Nguyen, Truong Khang, 2018. "The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 515-535.
    5. Mahmoudi, Ahmed & Mejri, Imen & Omri, Ahmed, 2016. "Study of natural convection cooling of a nanofluid subjected to a magnetic field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 333-348.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hussanan, Abid & Qasim, Muhammad & Chen, Zhi-Min, 2020. "Heat transfer enhancement in sodium alginate based magnetic and non-magnetic nanoparticles mixture hybrid nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    2. Ahmad, Shafiq & Nadeem, Sohail & Muhammad, Noor & Issakhov, Alibek, 2020. "Radiative SWCNT and MWCNT nanofluid flow of Falkner–Skan problem with double stratification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    3. Nazir, U. & Saleem, S. & Nawaz, M. & Sadiq, Muhammad Adil & Alderremy, A.A., 2020. "Study of transport phenomenon in Carreau fluid using Cattaneo–Christov heat flux model with temperature dependent diffusion coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    4. Xiong, Qingang & Ayani, M. & Barzinjy, Azeez A. & Dara, Rebwar Nasir & Shafee, Ahmad & Nguyen-Thoi, Trung, 2020. "Modeling of heat transfer augmentation due to complex-shaped turbulator using nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    5. Nguyen, Truong Khang & Usman, Muhammad & Sheikholeslami, M. & Haq, Rizwan Ul & Shafee, Ahmad & Jilani, Abdul Khader & Tlili, I., 2020. "Numerical analysis of MHD flow and nanoparticle migration within a permeable space containing Non-equilibrium model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    6. Reddy, M. Gnaneswara & Rani, M.V. V. N.L. Sudha & Kumar, K. Ganesh & Prasannakumar, B.C. & Chamkha, Ali J., 2020. "Cattaneo–Christov heat flux model on Blasius–Rayleigh–Stokes flow through a transitive magnetic field and Joule heating," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    7. Farshad, Seyyed Ali & Sheikholeslami, M., 2019. "Simulation of nanoparticles second law treatment inside a solar collector considering turbulent flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1-12.
    8. Rabbi, Khan Md. & Sheikholeslami, M. & Karim, Anwarul & Shafee, Ahmad & Li, Zhixiong & Tlili, Iskander, 2020. "Prediction of MHD flow and entropy generation by Artificial Neural Network in square cavity with heater-sink for nanomaterial," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    9. Li, Zhixiong & Hedayat, Mohammadali & Sheikholeslami, M. & Shafee, Ahmad & Zrelli, Houyem & Tlili, I. & Nguyen, Truong Khang, 2019. "Numerical simulation for entropy generation and hydrothermal performance of nanomaterial inside a porous cavity using Fe3O4 nanoparticles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 272-288.
    10. Aly, Abdelraheem M. & Raizah, Z.A.S., 2020. "Incompressible smoothed particle hydrodynamics simulation of natural convection in a nanofluid-filled complex wavy porous cavity with inner solid particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    11. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "Effects of conductive curved partition and magnetic field on natural convection and entropy generation in an inclined cavity filled with nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    12. Sheikholeslami, M. & Sheremet, Mikhail A. & Shafee, Ahmad & Tlili, Iskander, 2020. "Simulation of nanoliquid thermogravitational convection within a porous chamber imposing magnetic and radiation impacts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    13. Saif, Rai Sajjad & Muhammad, Taseer & Sadia, Haleema & Ellahi, Rahmat, 2020. "Hydromagnetic flow of Jeffrey nanofluid due to a curved stretching surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    14. Abbas, Nadeem & Nadeem, S. & Malik, M.Y., 2020. "Theoretical study of micropolar hybrid nanofluid over Riga channel with slip conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    15. Nawaz, M., 2020. "Role of hybrid nanoparticles in thermal performance of Sutterby fluid, the ethylene glycol," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    16. Manh, Tran Dinh & Khan, Ahmad Raza & Shafee, Ahmad & Nam, Nguyen Dang & Tlili, I. & Nguyen-Thoi, Trung & Li, Z., 2020. "Hybrid nanoparticles migration due to MHD free convection considering radiation effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    17. Nazir, U. & Nawaz, M. & Alharbi, Sayer Obaid, 2020. "Thermal performance of magnetohydrodynamic complex fluid using nano and hybrid nanoparticles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    18. Manh, Tran Dinh & Nam, Nguyen Dang & Jacob, Kavikumar & Hajizadeh, Ahmad & Babazadeh, Houman & Mahjoub, Mohammed & Tlili, I. & Li, Z., 2020. "Simulation of heat transfer in 2D porous tank in appearance of magnetic nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sheikholeslami, M. & Jafaryar, M. & Shafee, Ahmad & Li, Zhixiong, 2019. "Simulation of nanoparticles application for expediting melting of PCM inside a finned enclosure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 544-556.
    2. Li, Zhixiong & Sheikholeslami, M. & Ayani, M. & Shamlooei, M. & Shafee, Ahmad & Waly, Mohamed Ibrahim & Tlili, I., 2019. "Acceleration of solidification process by means of nanoparticles in an energy storage enclosure using numerical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 540-552.
    3. Hajmohammadi, M.R. & Haji Molla Ali Tork, M.H., 2019. "Effects of the magnetic field on the cylindrical Couette flow and heat transfer of a nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 234-245.
    4. Farshad, Seyyed Ali & Sheikholeslami, M., 2019. "Simulation of nanoparticles second law treatment inside a solar collector considering turbulent flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1-12.
    5. Bahrami, Mehrdad & Akbari, Mohammad & Bagherzadeh, Seyed Amin & Karimipour, Arash & Afrand, Masoud & Goodarzi, Marjan, 2019. "Develop 24 dissimilar ANNs by suitable architectures & training algorithms via sensitivity analysis to better statistical presentation: Measure MSEs between targets & ANN for Fe–CuO/Eg–Water nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 159-168.
    6. Ma, Yulin & Shahsavar, Amin & Moradi, Iman & Rostami, Sara & Moradikazerouni, Alireza & Yarmand, Hooman & Zulkifli, Nurin Wahidah Binti Mohd, 2021. "Using finite volume method for simulating the natural convective heat transfer of nano-fluid flow inside an inclined enclosure with conductive walls in the presence of a constant temperature heat sour," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    7. Sadi, M. & Arabkoohsar, A., 2019. "Exergoeconomic analysis of a combined solar-waste driven power plant," Renewable Energy, Elsevier, vol. 141(C), pages 883-893.
    8. Cao, Nan & Fu, Xianlong, 2023. "Stationary distribution and extinction of a Lotka–Volterra model with distribute delay and nonlinear stochastic perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    9. Alsarraf, Jalal & Moradikazerouni, Alireza & Shahsavar, Amin & Afrand, Masoud & Salehipour, Hamzeh & Tran, Minh Duc, 2019. "Hydrothermal analysis of turbulent boehmite alumina nanofluid flow with different nanoparticle shapes in a minichannel heat exchanger using two-phase mixture model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 275-288.
    10. Zhu, Yanlong & Lu, Jie & Yuan, Yuan & Wang, Fuqiang & Tan, Heping, 2020. "Effect of radiation on the effective thermal conductivity of encapsulated capsules containing high-temperature phase change materials," Renewable Energy, Elsevier, vol. 160(C), pages 676-685.
    11. Nafchi, Peyman Mirzakhani & Karimipour, Arash & Afrand, Masoud, 2019. "The evaluation on a new non-Newtonian hybrid mixture composed of TiO2/ZnO/EG to present a statistical approach of power law for its rheological and thermal properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 1-18.
    12. Li, Zhixiong & Hedayat, Mohammadali & Sheikholeslami, M. & Shafee, Ahmad & Zrelli, Houyem & Tlili, I. & Nguyen, Truong Khang, 2019. "Numerical simulation for entropy generation and hydrothermal performance of nanomaterial inside a porous cavity using Fe3O4 nanoparticles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 272-288.
    13. Hajmohammadi, M.R. & Toghraei, I., 2018. "Optimal design and thermal performance improvement of a double-layered microchannel heat sink by introducing Al2O3 nano-particles into the water," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 328-344.
    14. Arabkoohsar, Ahmad & Rahrabi, Hamid Reza & Alsagri, Ali Sulaiman & Alrobaian, Abdulrahman A., 2020. "Impact of Off-design operation on the effectiveness of a low-temperature compressed air energy storage system," Energy, Elsevier, vol. 197(C).
    15. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    16. Nguyen-Thoi, Trung & Sheikholeslami, M. & Hamid, Muhammad & Haq, Rizwan-ul & Shafee, Ahmad, 2019. "CVFEM modeling for nanofluid behavior involving non-equilibrium model and Lorentz effect in appearance of radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    17. Ma, Yuan & Mohebbi, Rasul & Rashidi, M.M. & Yang, Zhigang & Sheremet, Mikhail, 2020. "Nanoliquid thermal convection in I-shaped multiple-pipe heat exchanger under magnetic field influence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    18. Solangi, K.H. & Kazi, S.N. & Luhur, M.R. & Badarudin, A. & Amiri, A. & Sadri, Rad & Zubir, M.N.M. & Gharehkhani, Samira & Teng, K.H., 2015. "A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids," Energy, Elsevier, vol. 89(C), pages 1065-1086.
    19. Mahyari, Amirhossein Ansari & Karimipour, Arash & Afrand, Masoud, 2019. "Effects of dispersed added Graphene Oxide-Silicon Carbide nanoparticles to present a statistical formulation for the mixture thermal properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 98-112.
    20. Gilani, Hooman Azad & Hoseinzadeh, Siamak & Esmaeilion, Farbod & Memon, Saim & Garcia, Davide Astiaso & Assad, Mamdouh El Haj, 2022. "A solar thermal driven ORC-VFR system employed in subtropical Mediterranean climatic building," Energy, Elsevier, vol. 250(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:523:y:2019:i:c:p:87-104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.