IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v545y2020ics0378437119320965.html
   My bibliography  Save this article

Parameter study of variable order fractional model for the strain hardening behavior of glassy polymers

Author

Listed:
  • Meng, Ruifan
  • Yin, Deshun
  • Yang, Haixia
  • Xiang, Guangjian

Abstract

In this work, a novel approach of variable order fractional derivative model of viscoelasticity is provided to describe the strain hardening behavior of amorphous glassy polymers, which has been considered as a combined viscoelastic phenomenon in recent studies. The proposed model contains only four parameters as the order function is assumed to linearly vary with time. To validate the model, experimental tests of constant true strain rate uniaxial compression are conducted on PC to get the stress–strain data at different temperatures and strain rates. Comparison between the model prediction and experimental data show that the model can well describe the strain hardening behavior. It is also indicated by the linearly decreasing order function that strain hardening is a continuous stiffening process of material property because the smaller fractional order means that the property of material is closer to solid. Furthermore, a study on parameter is performed to investigate the physical significance of model parameters. It is shown that the slope of order change determines the rate of strain hardening and the intercept of order function mainly affects the initial stress of strain hardening. Finally, the rule of order function under various temperatures and strain rates reveals that during strain hardening the mechanical property of amorphous glassy polymers is softer but stiffens faster at higher temperatures and smaller strain rates.

Suggested Citation

  • Meng, Ruifan & Yin, Deshun & Yang, Haixia & Xiang, Guangjian, 2020. "Parameter study of variable order fractional model for the strain hardening behavior of glassy polymers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
  • Handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119320965
    DOI: 10.1016/j.physa.2019.123763
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119320965
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123763?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, HongGuang & Chen, Wen & Chen, YangQuan, 2009. "Variable-order fractional differential operators in anomalous diffusion modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(21), pages 4586-4592.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Jiawei & Chen, Yiming & Wang, Yuanhui & Cheng, Gang & Barrière, Thierry, 2020. "Shifted Legendre polynomials algorithm used for the dynamic analysis of PMMA viscoelastic beam with an improved fractional model," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    2. Cui, Yuhuan & Qu, Jingguo & Han, Cundi & Cheng, Gang & Zhang, Wei & Chen, Yiming, 2022. "Shifted Bernstein–Legendre polynomial collocation algorithm for numerical analysis of viscoelastic Euler–Bernoulli beam with variable order fractional model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 361-376.
    3. Sun, Lin & Chen, Yiming, 2021. "Numerical analysis of variable fractional viscoelastic column based on two-dimensional Legendre wavelets algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qu, Hai-Dong & Liu, Xuan & Lu, Xin & ur Rahman, Mati & She, Zi-Hang, 2022. "Neural network method for solving nonlinear fractional advection-diffusion equation with spatiotemporal variable-order," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    2. Ganji, R.M. & Jafari, H. & Baleanu, D., 2020. "A new approach for solving multi variable orders differential equations with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    3. Chang, Ailian & Sun, HongGuang & Zheng, Chunmiao & Lu, Bingqing & Lu, Chengpeng & Ma, Rui & Zhang, Yong, 2018. "A time fractional convection–diffusion equation to model gas transport through heterogeneous soil and gas reservoirs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 356-369.
    4. Wu, Fei & Gao, Renbo & Liu, Jie & Li, Cunbao, 2020. "New fractional variable-order creep model with short memory," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    5. Li, Jun-Feng & Jahanshahi, Hadi & Kacar, Sezgin & Chu, Yu-Ming & Gómez-Aguilar, J.F. & Alotaibi, Naif D. & Alharbi, Khalid H., 2021. "On the variable-order fractional memristor oscillator: Data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    6. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    7. Noureddine Djenina & Adel Ouannas & Iqbal M. Batiha & Giuseppe Grassi & Viet-Thanh Pham, 2020. "On the Stability of Linear Incommensurate Fractional-Order Difference Systems," Mathematics, MDPI, vol. 8(10), pages 1-12, October.
    8. Chauhan, Archana & Gautam, G.R. & Chauhan, S.P.S. & Dwivedi, Arpit, 2023. "A validation on concept of formula for variable order integral and derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    9. Hossein Fazli & HongGuang Sun & Juan J. Nieto, 2020. "Fractional Langevin Equation Involving Two Fractional Orders: Existence and Uniqueness Revisited," Mathematics, MDPI, vol. 8(5), pages 1-10, May.
    10. Pu, Zhe & Ran, Maohua & Luo, Hong, 2021. "Fast and high-order difference schemes for the fourth-order fractional sub-diffusion equations with spatially variable coefficient under the first Dirichlet boundary conditions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 110-133.
    11. Wei, Leilei & Li, Wenbo, 2021. "Local discontinuous Galerkin approximations to variable-order time-fractional diffusion model based on the Caputo–Fabrizio fractional derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 280-290.
    12. Liu, Lu & Xue, Dingyu & Zhang, Shuo, 2019. "Closed-loop time response analysis of irrational fractional-order systems with numerical Laplace transform technique," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 133-152.
    13. Heydari, M.H. & Avazzadeh, Z. & Mahmoudi, M.R., 2019. "Chebyshev cardinal wavelets for nonlinear stochastic differential equations driven with variable-order fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 105-124.
    14. Heydari, Mohammad Hossein & Avazzadeh, Zakieh, 2018. "Legendre wavelets optimization method for variable-order fractional Poisson equation," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 180-190.
    15. Zhang, Yong & Sun, HongGuang & Stowell, Harold H. & Zayernouri, Mohsen & Hansen, Samantha E., 2017. "A review of applications of fractional calculus in Earth system dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 29-46.
    16. Qureshi, Sania & Bonyah, Ebenezer & Shaikh, Asif Ali, 2019. "Classical and contemporary fractional operators for modeling diarrhea transmission dynamics under real statistical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    17. Sun, HongGuang & Li, Zhipeng & Zhang, Yong & Chen, Wen, 2017. "Fractional and fractal derivative models for transient anomalous diffusion: Model comparison," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 346-353.
    18. Heydari, Mohammad Hossein & Avazzadeh, Zakieh & Haromi, Malih Farzi, 2019. "A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 215-228.
    19. Yang, Xiao-Jun & Machado, J.A. Tenreiro, 2017. "A new fractional operator of variable order: Application in the description of anomalous diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 276-283.
    20. Souad Bensid Ahmed & Adel Ouannas & Mohammed Al Horani & Giuseppe Grassi, 2022. "The Discrete Fractional Variable-Order Tinkerbell Map: Chaos, 0–1 Test, and Entropy," Mathematics, MDPI, vol. 10(17), pages 1-13, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119320965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.