IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v545y2020ics0378437119320564.html
   My bibliography  Save this article

Global stability and Hopf bifurcation of a generalized viral infection model with multi-delays and humoral immunity

Author

Listed:
  • Hattaf, Khalid

Abstract

The aim of this paper is to develop a mathematical model for viral infection with humoral immunity and two modes of transmission that are the classical virus-to-cell infection and the direct cell-to-cell transmission. These both modes are modeled by two general incidence functions. Also, the model incorporates three delays including two distributed delays in cell infection and virus production, and one discrete delay that models the time needed to activate the immune response. We first prove the well-posedness of the developed model and the biological existence of equilibria. Further, the global stability of equilibria and the existence of Hopf bifurcation are investigated by using the direct and indirect Lyapunov methods. An important number of viral infection models and the corresponding results presented in recent studies are improved and extended.

Suggested Citation

  • Hattaf, Khalid, 2020. "Global stability and Hopf bifurcation of a generalized viral infection model with multi-delays and humoral immunity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
  • Handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119320564
    DOI: 10.1016/j.physa.2019.123689
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119320564
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123689?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khalid Hattaf & Noura Yousfi, 2018. "Qualitative Analysis of a Generalized Virus Dynamics Model with Both Modes of Transmission and Distributed Delays," International Journal of Differential Equations, Hindawi, vol. 2018, pages 1-7, February.
    2. Wang, Tianlei & Hu, Zhixing & Liao, Fucheng & Ma, Wanbiao, 2013. "Global stability analysis for delayed virus infection model with general incidence rate and humoral immunity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 89(C), pages 13-22.
    3. Lin, Jiazhe & Xu, Rui & Tian, Xiaohong, 2017. "Threshold dynamics of an HIV-1 virus model with both virus-to-cell and cell-to-cell transmissions, intracellular delay, and humoral immunity," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 516-530.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abraha, Teklebirhan & Al Basir, Fahad & Obsu, Legesse Lemecha & Torres, Delfim F.M., 2021. "Pest control using farming awareness: Impact of time delays and optimal use of biopesticides," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. Farah, El Mehdi & Amine, Saida & Allali, Karam, 2021. "Dynamics of a time-delayed two-strain epidemic model with general incidence rates," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    3. Pan, Sonjoy & Chakrabarty, Siddhartha P., 2022. "Analysis of a reaction–diffusion HCV model with general cell-to-cell incidence function incorporating B cell activation and cure rate," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 431-450.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed M. Elaiw & Safiya F. Alshehaiween & Aatef D. Hobiny, 2019. "Global Properties of a Delay-Distributed HIV Dynamics Model Including Impairment of B-Cell Functions," Mathematics, MDPI, vol. 7(9), pages 1-27, September.
    2. Elaiw, Ahmed M. & Alshehaiween, Safiya F. & Hobiny, Aatef D., 2020. "Impact of B-cell impairment on virus dynamics with time delay and two modes of transmission," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    3. Elaiw, Ahmed M. & Alshaikh, Matuka A., 2020. "Global stability of discrete pathogen infection model with humoral immunity and cell-to-cell transmission," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    4. Bai, Ning & Xu, Rui, 2022. "Backward bifurcation and stability analysis in a within-host HIV model with both virus-to-cell infection and cell-to-cell transmission, and anti-retroviral therapy," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 162-185.
    5. Ruiqing Shi & Ting Lu & Cuihong Wang, 2019. "Dynamic Analysis of a Fractional-Order Model for Hepatitis B Virus with Holling II Functional Response," Complexity, Hindawi, vol. 2019, pages 1-13, August.
    6. Wang, Jinliang & Guo, Min & Liu, Xianning & Zhao, Zhitao, 2016. "Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 149-161.
    7. Zhang, Lidong & Wang, Jinliang & Zhang, Ran, 2024. "Mathematical analysis for an age-space structured HIV model with latency," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 595-617.
    8. Zhang, Ge & Li, Zhiming & Din, Anwarud, 2022. "A stochastic SIQR epidemic model with Lévy jumps and three-time delays," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    9. Ma, Yuanlin & Yu, Xingwang, 2020. "The effect of environmental noise on threshold dynamics for a stochastic viral infection model with two modes of transmission and immune impairment," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    10. Qi, Haokun & Meng, Xinzhu, 2021. "Mathematical modeling, analysis and numerical simulation of HIV: The influence of stochastic environmental fluctuations on dynamics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 700-719.
    11. Sun, Hongquan & Li, Jin, 2020. "A numerical method for a diffusive virus model with general incidence function, cell-to-cell transmission and time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    12. Hattaf, Khalid & Dutta, Hemen, 2020. "Modeling the dynamics of viral infections in presence of latently infected cells," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    13. Mann Manyombe, M.L. & Mbang, J. & Chendjou, G., 2021. "Stability and Hopf bifurcation of a CTL-inclusive HIV-1 infection model with both viral and cellular infections, and three delays," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    14. Geng, Yan & Xu, Jinhu & Hou, Jiangyong, 2018. "Discretization and dynamic consistency of a delayed and diffusive viral infection model," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 282-295.
    15. Wang, Xia & Song, Xinyu & Tang, Sanyi & Rong, Libin, 2016. "Analysis of HIV models with multiple target cell populations and general nonlinear rates of viral infection and cell death," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 124(C), pages 87-103.
    16. Lin, Jiazhe & Xu, Rui & Tian, Xiaohong, 2017. "Threshold dynamics of an HIV-1 virus model with both virus-to-cell and cell-to-cell transmissions, intracellular delay, and humoral immunity," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 516-530.
    17. Wang, Yan & Liu, Xianning, 2017. "Stability and Hopf bifurcation of a within-host chikungunya virus infection model with two delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 138(C), pages 31-48.
    18. Chen, Chong & Zhou, Yinggao, 2023. "Dynamic analysis of HIV model with a general incidence, CTLs immune response and intracellular delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 159-181.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119320564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.