IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v89y2013icp13-22.html
   My bibliography  Save this article

Global stability analysis for delayed virus infection model with general incidence rate and humoral immunity

Author

Listed:
  • Wang, Tianlei
  • Hu, Zhixing
  • Liao, Fucheng
  • Ma, Wanbiao

Abstract

In this paper, we investigate the dynamical behavior of a virus infection model with general incidence rate and humoral immunity. By using suitable Lyapunov functional and the LaSalle's invariance principle, we establish the global stability of the three equilibria. The uninfected equilibrium E0 is globally asymptotically stable if R0≤1, the infected equilibrium without immunity E1 is globally asymptotically stable if R1≤1 and R0>1, the infected equilibrium with humoral immunity E2 is globally asymptotically stable if R1>1. We check our theorems with numerical simulation in the end.

Suggested Citation

  • Wang, Tianlei & Hu, Zhixing & Liao, Fucheng & Ma, Wanbiao, 2013. "Global stability analysis for delayed virus infection model with general incidence rate and humoral immunity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 89(C), pages 13-22.
  • Handle: RePEc:eee:matcom:v:89:y:2013:i:c:p:13-22
    DOI: 10.1016/j.matcom.2013.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475413000451
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2013.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ji, Yu & Min, Lequan & Zheng, Yu & Su, Yongmei, 2010. "A viral infection model with periodic immune response and nonlinear CTL response," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(12), pages 2309-2316.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yan & Liu, Xianning, 2017. "Stability and Hopf bifurcation of a within-host chikungunya virus infection model with two delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 138(C), pages 31-48.
    2. Hattaf, Khalid, 2020. "Global stability and Hopf bifurcation of a generalized viral infection model with multi-delays and humoral immunity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    3. Lin, Jiazhe & Xu, Rui & Tian, Xiaohong, 2017. "Threshold dynamics of an HIV-1 virus model with both virus-to-cell and cell-to-cell transmissions, intracellular delay, and humoral immunity," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 516-530.
    4. Sun, Hongquan & Li, Jin, 2020. "A numerical method for a diffusive virus model with general incidence function, cell-to-cell transmission and time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    5. Ahmed M. Elaiw & Safiya F. Alshehaiween & Aatef D. Hobiny, 2019. "Global Properties of a Delay-Distributed HIV Dynamics Model Including Impairment of B-Cell Functions," Mathematics, MDPI, vol. 7(9), pages 1-27, September.
    6. Wang, Jinliang & Guo, Min & Liu, Xianning & Zhao, Zhitao, 2016. "Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 149-161.
    7. Elaiw, Ahmed M. & Alshehaiween, Safiya F. & Hobiny, Aatef D., 2020. "Impact of B-cell impairment on virus dynamics with time delay and two modes of transmission," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    8. Elaiw, Ahmed M. & Alshaikh, Matuka A., 2020. "Global stability of discrete pathogen infection model with humoral immunity and cell-to-cell transmission," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    9. Wang, Xia & Song, Xinyu & Tang, Sanyi & Rong, Libin, 2016. "Analysis of HIV models with multiple target cell populations and general nonlinear rates of viral infection and cell death," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 124(C), pages 87-103.
    10. Geng, Yan & Xu, Jinhu & Hou, Jiangyong, 2018. "Discretization and dynamic consistency of a delayed and diffusive viral infection model," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 282-295.
    11. Zhang, Ge & Li, Zhiming & Din, Anwarud, 2022. "A stochastic SIQR epidemic model with Lévy jumps and three-time delays," Applied Mathematics and Computation, Elsevier, vol. 431(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Zhenguo & Zhou, Yicang, 2012. "Dynamics of a viral infection model with delayed CTL response and immune circadian rhythm," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1133-1139.
    2. Xie, Falan & Shan, Meijing & Lian, Xinze & Wang, Weiming, 2017. "Periodic solution of a stochastic HBV infection model with logistic hepatocyte growth," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 630-641.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:89:y:2013:i:c:p:13-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.