IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v200y2022icp162-185.html
   My bibliography  Save this article

Backward bifurcation and stability analysis in a within-host HIV model with both virus-to-cell infection and cell-to-cell transmission, and anti-retroviral therapy

Author

Listed:
  • Bai, Ning
  • Xu, Rui

Abstract

Researches have shown that in addition to direct virus-to-cell infection, viral particles can also be transferred from a productively-infected cell to an uninfected cell through the formation of virological synapses. In order to reduce the viral load in infected individuals, different classes of antiretroviral drugs have been developed, including reverse transcriptase inhibitor (RTI), integrase inhibitor (II), protease inhibitor (PI) and so on. In this paper, we incorporate the mitotic proliferation of target cells which is described by the logistic term, both virus-to-cell infection and cell-to-cell transmission, the intracellular delay and RTI-based therapy into an in-host HIV infection model. Through mathematical analysis, we find that the model undergoes a backward bifurcation when the turn-over rate coefficient of productively-infected cells is smaller than its mitotic proliferation rate coefficient. When the turn-over rate coefficient of productively-infected cells is greater than its mitotic proliferation rate coefficient, the existence of Hopf bifurcation at the chronic-infection equilibrium with and without the intracellular delay is established, respectively. Numerical simulations suggest that the dynamics of the model be sensitive to parameter values and initial conditions, which may be of great significance to control HIV infection. We also show numerical evidence to support the fact that the smaller the therapy efficacy, the higher the viral load in infected individuals.

Suggested Citation

  • Bai, Ning & Xu, Rui, 2022. "Backward bifurcation and stability analysis in a within-host HIV model with both virus-to-cell infection and cell-to-cell transmission, and anti-retroviral therapy," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 162-185.
  • Handle: RePEc:eee:matcom:v:200:y:2022:i:c:p:162-185
    DOI: 10.1016/j.matcom.2022.04.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422001628
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.04.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Jiazhe & Xu, Rui & Tian, Xiaohong, 2017. "Threshold dynamics of an HIV-1 virus model with both virus-to-cell and cell-to-cell transmissions, intracellular delay, and humoral immunity," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 516-530.
    2. Cai, Liming & Li, Xuezhi, 2009. "Stability and Hopf bifurcation in a delayed model for HIV infection of CD4+T cells," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruiqing Shi & Ting Lu & Cuihong Wang, 2019. "Dynamic Analysis of a Fractional-Order Model for Hepatitis B Virus with Holling II Functional Response," Complexity, Hindawi, vol. 2019, pages 1-13, August.
    2. Zhang, Lidong & Wang, Jinliang & Zhang, Ran, 2024. "Mathematical analysis for an age-space structured HIV model with latency," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 595-617.
    3. Zhang, Huaqiao & Chen, Hong & Jiang, Cuicui & Wang, Kaifa, 2017. "Effect of explicit dynamics of free virus and intracellular delay," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 827-834.
    4. Jajarmi, Amin & Baleanu, Dumitru, 2018. "A new fractional analysis on the interaction of HIV with CD4+ T-cells," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 221-229.
    5. Hattaf, Khalid, 2020. "Global stability and Hopf bifurcation of a generalized viral infection model with multi-delays and humoral immunity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    6. Ahmed M. Elaiw & Safiya F. Alshehaiween & Aatef D. Hobiny, 2019. "Global Properties of a Delay-Distributed HIV Dynamics Model Including Impairment of B-Cell Functions," Mathematics, MDPI, vol. 7(9), pages 1-27, September.
    7. Ma, Yuanlin & Yu, Xingwang, 2020. "The effect of environmental noise on threshold dynamics for a stochastic viral infection model with two modes of transmission and immune impairment," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    8. Qi, Haokun & Meng, Xinzhu, 2021. "Mathematical modeling, analysis and numerical simulation of HIV: The influence of stochastic environmental fluctuations on dynamics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 700-719.
    9. Mann Manyombe, M.L. & Mbang, J. & Chendjou, G., 2021. "Stability and Hopf bifurcation of a CTL-inclusive HIV-1 infection model with both viral and cellular infections, and three delays," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    10. Elaiw, Ahmed M. & Alshehaiween, Safiya F. & Hobiny, Aatef D., 2020. "Impact of B-cell impairment on virus dynamics with time delay and two modes of transmission," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    11. Tanvi, & Aggarwal, Rajiv, 2020. "Stability analysis of a delayed HIV-TB co-infection model in resource limitation settings," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    12. Elaiw, Ahmed M. & Alshaikh, Matuka A., 2020. "Global stability of discrete pathogen infection model with humoral immunity and cell-to-cell transmission," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    13. Chen, Chong & Zhou, Yinggao, 2023. "Dynamic analysis of HIV model with a general incidence, CTLs immune response and intracellular delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 159-181.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:200:y:2022:i:c:p:162-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.