Signatures of criticality in mining accidents and recurrent neural network forecasting model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2019.122656
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
- Mauro, John C. & Diehl, Brett & Marcellin, Richard F. & Vaughn, Daniel J., 2018. "Workplace accidents and self-organized criticality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 284-289.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wei Dai & Yuan An & Wen Long, 2021. "Price change prediction of ultra high frequency financial data based on temporal convolutional network," Papers 2107.00261, arXiv.org.
- Shao, Zhen & Zheng, Qingru & Yang, Shanlin & Gao, Fei & Cheng, Manli & Zhang, Qiang & Liu, Chen, 2020. "Modeling and forecasting the electricity clearing price: A novel BELM based pattern classification framework and a comparative analytic study on multi-layer BELM and LSTM," Energy Economics, Elsevier, vol. 86(C).
- Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
- Giacomo di Tollo & Joseph Andria & Gianni Filograsso, 2023. "The Predictive Power of Social Media Sentiment: Evidence from Cryptocurrencies and Stock Markets Using NLP and Stochastic ANNs," Mathematics, MDPI, vol. 11(16), pages 1-18, August.
- Wang, Jianzhou & Lv, Mengzheng & Wang, Shuai & Gao, Jialu & Zhao, Yang & Wang, Qiangqiang, 2024. "Can multi-period auto-portfolio systems improve returns? Evidence from Chinese and U.S. stock markets," International Review of Financial Analysis, Elsevier, vol. 95(PB).
- Ghosh, Indranil & Chaudhuri, Tamal Datta & Alfaro-Cortés, Esteban & Gámez, Matías & García, Noelia, 2022. "A hybrid approach to forecasting futures prices with simultaneous consideration of optimality in ensemble feature selection and advanced artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
- Sina Montazeri & Akram Mirzaeinia & Haseebullah Jumakhan & Amir Mirzaeinia, 2024. "CNN-DRL for Scalable Actions in Finance," Papers 2401.06179, arXiv.org.
- Alameer, Zakaria & Elaziz, Mohamed Abd & Ewees, Ahmed A. & Ye, Haiwang & Jianhua, Zhang, 2019. "Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm," Resources Policy, Elsevier, vol. 61(C), pages 250-260.
- Bartosz Bieganowski & Robert 'Slepaczuk, 2024. "Supervised Autoencoders with Fractionally Differentiated Features and Triple Barrier Labelling Enhance Predictions on Noisy Data," Papers 2411.12753, arXiv.org, revised Nov 2024.
- Rad, Hossein & Low, Rand Kwong Yew & Miffre, Joëlle & Faff, Robert, 2023.
"The commodity risk premium and neural networks,"
Journal of Empirical Finance, Elsevier, vol. 74(C).
- Joelle Miffre & Hossein Rad & Rand Kwong Yew Low & Robert Faff, 2023. "The commodity risk premium and neural networks," Post-Print hal-04322519, HAL.
- Suyuan Luo & Tsan-Ming Choi, 2024. "Great partners: how deep learning and blockchain help improve business operations together," Annals of Operations Research, Springer, vol. 339(1), pages 53-78, August.
- Mst. Shapna Akter & Hossain Shahriar & Reaz Chowdhury & M. R. C. Mahdy, 2022. "Forecasting the Risk Factor of Frontier Markets: A Novel Stacking Ensemble of Neural Network Approach," Future Internet, MDPI, vol. 14(9), pages 1-23, August.
- Noura Metawa & Mohamemd I. Alghamdi & Ibrahim M. El-Hasnony & Mohamed Elhoseny, 2021. "Return Rate Prediction in Blockchain Financial Products Using Deep Learning," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
- Kentaro Imajo & Kentaro Minami & Katsuya Ito & Kei Nakagawa, 2020. "Deep Portfolio Optimization via Distributional Prediction of Residual Factors," Papers 2012.07245, arXiv.org.
- Junjie Guo, 2024. "Deep Learning in Long-Short Stock Portfolio Allocation: An Empirical Study," Papers 2411.13555, arXiv.org, revised Nov 2024.
- Kailai Ni & Jianzhou Wang & Guangyu Tang & Danxiang Wei, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network for Electricity Load Forecasting: A Case Study in Australia," Energies, MDPI, vol. 12(13), pages 1-30, June.
- Jie Fang & Jianwu Lin & Shutao Xia & Yong Jiang & Zhikang Xia & Xiang Liu, 2020. "Neural Network-based Automatic Factor Construction," Papers 2008.06225, arXiv.org, revised Oct 2020.
- Qing, Xiangyun & Niu, Yugang, 2018. "Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM," Energy, Elsevier, vol. 148(C), pages 461-468.
- James Wallbridge, 2020. "Transformers for Limit Order Books," Papers 2003.00130, arXiv.org.
- Burka, Dávid & Puppe, Clemens & Szepesváry, László & Tasnádi, Attila, 2022.
"Voting: A machine learning approach,"
European Journal of Operational Research, Elsevier, vol. 299(3), pages 1003-1017.
- Burka, Dávid & Puppe, Clemens & Szepesváry, László & Tasnádi, Attila, 2020. "Voting: A machine learning approach," Working Paper Series in Economics 145, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
More about this item
Keywords
Mining safety; Self-organized criticality; Time-series forecasting; Machine learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:537:y:2020:i:c:s037843711931516x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.