IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v537y2020ics0378437119314992.html
   My bibliography  Save this article

Enhance chaotic gravitational search algorithm (CGSA) by balance adjustment mechanism and sine randomness function for continuous optimization problems

Author

Listed:
  • Jiang, Jianhua
  • Yang, Xi
  • Meng, Xianqiu
  • Li, Keqin

Abstract

The gravitational search algorithm (GSA) is a population-based meta-heuristic optimization algorithm which finds the optimal solution by the law of gravity and attraction between objects. However, as the number of iterations increases, the increase of the quality of the agents makes GSA fall into the local optimal solution more easily, which greatly reduces the exploration capability of the algorithm. Although the chaotic gravitational search algorithm (CGSA) uses chaotic maps for improving diversity to solve this problem, it still has problems with the balance of exploration and exploitation. This paper proposes the balance adjustment based chaotic gravitational search algorithm (BA-CGSA), which introduces the sine randomness function and the balance mechanism to solve the above problem. 30 benchmark functions of IEEE CEC 2014 are adopted to evaluate the performance of the proposed algorithm in terms of exploration and exploitation. Meanwhile, a real engineering design problem is used to illustrate the ability of the algorithm to solve practical application problems. The experimental results demonstrate its good performance in continuous optimization problems.

Suggested Citation

  • Jiang, Jianhua & Yang, Xi & Meng, Xianqiu & Li, Keqin, 2020. "Enhance chaotic gravitational search algorithm (CGSA) by balance adjustment mechanism and sine randomness function for continuous optimization problems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
  • Handle: RePEc:eee:phsmap:v:537:y:2020:i:c:s0378437119314992
    DOI: 10.1016/j.physa.2019.122621
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119314992
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122621?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marouani, H. & Fouad, Y., 2019. "Particle swarm optimization performance for fitting of Lévy noise data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 708-714.
    2. Yang, Yong & Tu, Lilan & Li, Kuanyang & Guo, Tianjiao, 2019. "Optimized inter-structure for enhancing the synchronizability of interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 310-318.
    3. V. Jothiprakash & R. Arunkumar, 2013. "Optimization of Hydropower Reservoir Using Evolutionary Algorithms Coupled with Chaos," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 1963-1979, May.
    4. Yang, Benhao & Yang, Shunkun & Zhang, Jiaquan & Li, Daqing, 2018. "Optimizing random searches on three-dimensional lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 120-125.
    5. Moradi, Mehdi & Parsa, Saeed, 2019. "An evolutionary method for community detection using a novel local search strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 457-475.
    6. Tang, Jianxin & Zhang, Ruisheng & Yao, Yabing & Yang, Fan & Zhao, Zhili & Hu, Rongjing & Yuan, Yongna, 2019. "Identification of top-k influential nodes based on enhanced discrete particle swarm optimization for influence maximization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 477-496.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Jianhua & Xu, Meirong & Meng, Xianqiu & Li, Keqin, 2020. "STSA: A sine Tree-Seed Algorithm for complex continuous optimization problems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    2. Tao Bai & Lianzhou Wu & Jian-xia Chang & Qiang Huang, 2015. "Multi-Objective Optimal Operation Model of Cascade Reservoirs and Its Application on Water and Sediment Regulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2751-2770, June.
    3. Iman Ahmadianfar & Bijay Halder & Salim Heddam & Leonardo Goliatt & Mou Leong Tan & Zulfaqar Sa’adi & Zainab Al-Khafaji & Raad Z. Homod & Tarik A. Rashid & Zaher Mundher Yaseen, 2023. "An Enhanced Multioperator Runge–Kutta Algorithm for Optimizing Complex Water Engineering Problems," Sustainability, MDPI, vol. 15(3), pages 1-28, January.
    4. Gokmen Tayfur, 2017. "Modern Optimization Methods in Water Resources Planning, Engineering and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3205-3233, August.
    5. R. Arunkumar & V. Jothiprakash, 2013. "Chaotic Evolutionary Algorithms for Multi-Reservoir Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5207-5222, December.
    6. Sajad Ahmad Rather & Sujit Das, 2023. "Levy Flight and Chaos Theory-Based Gravitational Search Algorithm for Image Segmentation," Mathematics, MDPI, vol. 11(18), pages 1-56, September.
    7. Ehsan Ardjmand & William A. Young II & Najat E. Almasarwah, 2021. "Detecting Community Structures Within Complex Networks Using a Discrete Unconscious Search Algorithm," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 12(2), pages 15-32, April.
    8. J. Yazdi & A. Moridi, 2018. "Multi-Objective Differential Evolution for Design of Cascade Hydropower Reservoir Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4779-4791, November.
    9. Banafsheh Nematollahi & Mohammad Reza Nikoo & Amir H. Gandomi & Nasser Talebbeydokhti & Gholam Reza Rakhshandehroo, 2022. "A Multi-criteria Decision-making Optimization Model for Flood Management in Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 4933-4949, October.
    10. Abbas Salehi & Behrooz Masoumi, 2020. "KATZ centrality with biogeography-based optimization for influence maximization problem," Journal of Combinatorial Optimization, Springer, vol. 40(1), pages 205-226, July.
    11. Reema Aswani & Arpan Kumar Kar & P. Vigneswara Ilavarasan, 2018. "Detection of Spammers in Twitter marketing: A Hybrid Approach Using Social Media Analytics and Bio Inspired Computing," Information Systems Frontiers, Springer, vol. 20(3), pages 515-530, June.
    12. Lv, Ya-jun & Wang, Jun-wei & Wang, Julian & Xiong, Cheng & Zou, Liang & Li, Ly & Li, Da-wang, 2020. "Steel corrosion prediction based on support vector machines," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    13. Yanbin Li & Yubo Li & Kai Feng & Kaiyuan Tian & Tongxuan Huang, 2023. "Dynamic Control of Flood Limited Water Levels for Parallel Reservoirs by Considering Forecast Period Uncertainty," Sustainability, MDPI, vol. 15(24), pages 1-22, December.
    14. Dhuha Abdulhadi Abduljabbar & Siti Zaiton Mohd Hashim & Roselina Sallehuddin, 2020. "Nature-inspired optimization algorithms for community detection in complex networks: a review and future trends," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 74(2), pages 225-252, June.
    15. Guo, Tianjiao & Tu, Lilan & Guo, Yifei & Hu, Jia & Su, Qingqing, 2023. "Control-capacity analysis and optimized construction for controlled interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    16. Shang, Ronghua & Zhang, Weitong & Zhang, Jingwen & Feng, Jie & Jiao, Licheng, 2022. "Local community detection based on higher-order structure and edge information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    17. Mehrdad Taghian & Iman Ahmadianfar, 2018. "Maximizing the Firm Energy Yield Preserving Total Energy Generation Via an Optimal Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 141-154, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:537:y:2020:i:c:s0378437119314992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.