IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v534y2019ics0378437119312427.html
   My bibliography  Save this article

Numerical assessment of Bödewadt flow and heat transfer over a permeable disk with variable fluid properties

Author

Listed:
  • Rafiq, Talat
  • Mustafa, M.
  • Farooq, M. Asif

Abstract

Impact of variable fluid properties on heat transfer in Bödewadt flow with wall suction is the main focus of present article. Recent studies have predicted that energy equation in Bödewadt flow can have physically compatible solution only when disk is porous. We utilize the usual von-Kármán variables to transform the governing equations of fluid motion and heat transfer (with variable properties) into self-similar differential equations. The final problem comprises of a parameter θe that measures the degree of dependence of fluid viscosity on temperature. A numerical approach is pursued to determine velocity components, wall stresses, temperature and heat transfer rate from the disk. Wall suction velocity is found to have a pivotal role on the solutions. The main outcome of the study is that fluid velocity and temperature around the disk are considerably altered by varying the parameter θe. The deviations of present results from those obtained with constant fluid properties are deliberated. Present results are in perfect agreement with the available literature in a limiting sense.

Suggested Citation

  • Rafiq, Talat & Mustafa, M. & Farooq, M. Asif, 2019. "Numerical assessment of Bödewadt flow and heat transfer over a permeable disk with variable fluid properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
  • Handle: RePEc:eee:phsmap:v:534:y:2019:i:c:s0378437119312427
    DOI: 10.1016/j.physa.2019.122138
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119312427
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Norfifah Bachok & Anuar Ishak & Ioan Pop, 2012. "Boundary Layer Flow and Heat Transfer with Variable Fluid Properties on a Moving Flat Plate in a Parallel Free Stream," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-10, July.
    2. Sheikholeslami, M. & Jafaryar, M. & Shafee, Ahmad & Li, Zhixiong, 2019. "Simulation of nanoparticles application for expediting melting of PCM inside a finned enclosure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 544-556.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manh, Tran Dinh & Jafaryar, M. & Hamad, Samir Mustafa & Barzinjy, Azeez A. & Shafee, Ahmad & Abohamzeh, Elham & Tlili, Iskander, 2020. "Nanoparticles hydrothermal simulation in a pipe with insertion of compound turbulator analyzing entropy generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    2. Ahmad, Shafiq & Nadeem, Sohail & Muhammad, Noor & Issakhov, Alibek, 2020. "Radiative SWCNT and MWCNT nanofluid flow of Falkner–Skan problem with double stratification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    3. Manh, Tran Dinh & Tlili, I. & Shafee, Ahmad & Nguyen-Thoi, Trung & Hamouda, Hassen, 2020. "Modeling of hybrid nanofluid behavior within a permeable media involving buoyancy effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    4. Xiong, Qingang & Ayani, M. & Barzinjy, Azeez A. & Dara, Rebwar Nasir & Shafee, Ahmad & Nguyen-Thoi, Trung, 2020. "Modeling of heat transfer augmentation due to complex-shaped turbulator using nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    5. Manh, Tran Dinh & Nam, Nguyen Dang & Jacob, Kavikumar & Hajizadeh, Ahmad & Babazadeh, Houman & Mahjoub, Mohammed & Tlili, I. & Li, Z., 2020. "Simulation of heat transfer in 2D porous tank in appearance of magnetic nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    6. Xiong, Qingang & Tlili, I. & Dara, Rebwar Nasir & Shafee, Ahmad & Nguyen-Thoi, Trung & Rebey, Amor & Haq, Rizwan-ul & Li, Z., 2020. "Energy storage simulation involving NEPCM solidification in appearance of fins," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    7. Nguyen-Thoi, Trung & Sheikholeslami, M. & Hamid, Muhammad & Haq, Rizwan-ul & Shafee, Ahmad, 2019. "CVFEM modeling for nanofluid behavior involving non-equilibrium model and Lorentz effect in appearance of radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    8. Rabbi, Khan Md. & Sheikholeslami, M. & Karim, Anwarul & Shafee, Ahmad & Li, Zhixiong & Tlili, Iskander, 2020. "Prediction of MHD flow and entropy generation by Artificial Neural Network in square cavity with heater-sink for nanomaterial," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    9. Sheikholeslami, M. & Sheremet, Mikhail A. & Shafee, Ahmad & Tlili, Iskander, 2020. "Simulation of nanoliquid thermogravitational convection within a porous chamber imposing magnetic and radiation impacts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    10. Mohammad Ghalambaz & Seyed Abdollah Mansouri Mehryan & Reza Kalantar Feeoj & Ahmad Hajjar & Obai Younis & Pouyan Talebizadehsardari & Wahiba Yaïci, 2021. "Effect of the Quasi-Petal Heat Transfer Tube on the Melting Process of the Nano-Enhanced Phase Change Substance in a Thermal Energy Storage Unit," Sustainability, MDPI, vol. 13(5), pages 1-22, March.
    11. Manh, Tran Dinh & Khan, Ahmad Raza & Shafee, Ahmad & Nam, Nguyen Dang & Tlili, I. & Nguyen-Thoi, Trung & Li, Z., 2020. "Hybrid nanoparticles migration due to MHD free convection considering radiation effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    12. Tlili, Iskander & Osman, M. & Alarifi, I. & Belmabrouk, H. & Shafee, Ahmad & Li, Zhixiong, 2019. "Performance enhancement of a multi-effect desalination plant: A thermodynamic investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    13. Mohammad Ghalambaz & Seyed Abdollah Mansouri Mehryan & Masoud Mozaffari & Obai Younis & Aritra Ghosh, 2021. "The Effect of Variable-Length Fins and Different High Thermal Conductivity Nanoparticles in the Performance of the Energy Storage Unit Containing Bio-Based Phase Change Substance," Sustainability, MDPI, vol. 13(5), pages 1-22, March.
    14. Hussanan, Abid & Qasim, Muhammad & Chen, Zhi-Min, 2020. "Heat transfer enhancement in sodium alginate based magnetic and non-magnetic nanoparticles mixture hybrid nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    15. Mittal, Akhil S. & Patel, Harshad R., 2020. "Influence of thermophoresis and Brownian motion on mixed convection two dimensional MHD Casson fluid flow with non-linear radiation and heat generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    16. Ahmed, Naveed & Adnan, & Khan, Umar & Mohyud-Din, Syed Tauseef, 2020. "Modified heat transfer flow model for SWCNTs-H2O and MWCNTs-H2O over a curved stretchable semi infinite region with thermal jump and velocity slip: A numerical simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    17. Aly, Abdelraheem M. & Raizah, Z.A.S., 2020. "Incompressible smoothed particle hydrodynamics simulation of natural convection in a nanofluid-filled complex wavy porous cavity with inner solid particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    18. Abbas, Nadeem & Nadeem, S. & Malik, M.Y., 2020. "On extended version of Yamada–Ota and Xue models in micropolar fluid flow under the region of stagnation point," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    19. Nazir, U. & Nawaz, M. & Alharbi, Sayer Obaid, 2020. "Thermal performance of magnetohydrodynamic complex fluid using nano and hybrid nanoparticles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    20. Shafee, Ahmad & Arabkoohsar, A. & Sheikholeslami, M. & Jafaryar, M. & Ayani, M. & Nguyen-Thoi, Trung & Basha, D. Baba & Tlili, I. & Li, Zhixiong, 2020. "Numerical simulation for turbulent flow in a tube with combined swirl flow device considering nanofluid exergy loss," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:534:y:2019:i:c:s0378437119312427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.