IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v534y2019ics037843711931129x.html
   My bibliography  Save this article

An extended exploration and preferential return model for human mobility simulation at individual and collective levels

Author

Listed:
  • Wang, Jianying
  • Dong, Lei
  • Cheng, Ximeng
  • Yang, Weijun
  • Liu, Yu

Abstract

Human mobility models have prevalent applications in traffic management, urban planning, and disease prevention. Modeling human mobility combining both the statistical physical mechanics and geographical constrains is not fully investigated. In this research, we extend the exploration and preferential return (EPR) model by considering both spatial heterogeneity and distance decay. The extended model takes rank distance in the distance decay function, and is validated in four cities based on the population distribution and the trajectory data. Our model not only reproduces the statistics of human mobility at both the individual and collective levels with high accuracy, but also has a robust prediction at both high and low resolutions. The study demonstrates the potential of applications of the human mobility models aggregating the collective and individual levels factors, and sheds light on the trade-off between ‘simple’ mobility rules and ‘complex’ geographical environments.

Suggested Citation

  • Wang, Jianying & Dong, Lei & Cheng, Ximeng & Yang, Weijun & Liu, Yu, 2019. "An extended exploration and preferential return model for human mobility simulation at individual and collective levels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
  • Handle: RePEc:eee:phsmap:v:534:y:2019:i:c:s037843711931129x
    DOI: 10.1016/j.physa.2019.121921
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711931129X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.121921?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei Luo & Fahui Wang, 2003. "Measures of Spatial Accessibility to Health Care in a GIS Environment: Synthesis and a Case Study in the Chicago Region," Environment and Planning B, , vol. 30(6), pages 865-884, December.
    2. Robert Schlich & Kay Axhausen, 2003. "Habitual travel behaviour: Evidence from a six-week travel diary," Transportation, Springer, vol. 30(1), pages 13-36, February.
    3. Tana & Mei-Po Kwan & Yanwei Chai, 2016. "Urban form, car ownership and activity space in inner suburbs: A comparison between Beijing (China) and Chicago (United States)," Urban Studies, Urban Studies Journal Limited, vol. 53(9), pages 1784-1802, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chris Harding & Ahmadreza Faghih Imani & Siva Srikukenthiran & Eric J. Miller & Khandker Nurul Habib, 2021. "Are we there yet? Assessing smartphone apps as full-fledged tools for activity-travel surveys," Transportation, Springer, vol. 48(5), pages 2433-2460, October.
    2. Heinen, Eva & Chatterjee, Kiron, 2015. "The same mode again? An exploration of mode choice variability in Great Britain using the National Travel Survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 266-282.
    3. Robert Stewart & Marie Urban & Samantha Duchscherer & Jason Kaufman & April Morton & Gautam Thakur & Jesse Piburn & Jessica Moehl, 2016. "A Bayesian machine learning model for estimating building occupancy from open source data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1929-1956, April.
    4. Sanjay Gupta & Kushagra Sinha, 2022. "Assessing the Factors Impacting Transport Usage of Mobility App Users in the National Capital Territory of Delhi, India," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    5. Ta, Na & Zhao, Ying & Chai, Yanwei, 2016. "Built environment, peak hours and route choice efficiency: An investigation of commuting efficiency using GPS data," Journal of Transport Geography, Elsevier, vol. 57(C), pages 161-170.
    6. Lo, A. W.-T. & Houston, D., 2018. "How do compact, accessible, and walkable communities promote gender equality in spatial behavior?," Journal of Transport Geography, Elsevier, vol. 68(C), pages 42-54.
    7. Tao, Sui & Rohde, David & Corcoran, Jonathan, 2014. "Examining the spatial–temporal dynamics of bus passenger travel behaviour using smart card data and the flow-comap," Journal of Transport Geography, Elsevier, vol. 41(C), pages 21-36.
    8. Börjesson, Maria & Eliasson, Jonas, 2014. "Experiences from the Swedish Value of Time study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 144-158.
    9. Minnen, Joeri & Glorieux, Ignace & van Tienoven, Theun Pieter, 2015. "Transportation habits: Evidence from time diary data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 76(C), pages 25-37.
    10. Ma, Xinwei & Tian, Xiaolin & Jin, Zejin & Cui, Hongjun & Ji, Yanjie & Cheng, Long, 2024. "Evaluation and determinants of metro users' regularity: Insights from transit one-card data," Journal of Transport Geography, Elsevier, vol. 118(C).
    11. Perchoux, Camille & Kestens, Yan & Thomas, Frédérique & Hulst, Andraea Van & Thierry, Benoit & Chaix, Basile, 2014. "Assessing patterns of spatial behavior in health studies: Their socio-demographic determinants and associations with transportation modes (the RECORD Cohort Study)," Social Science & Medicine, Elsevier, vol. 119(C), pages 64-73.
    12. Milad Mehdizadeh & Alireza Ermagun, 2020. "“I’ll never stop driving my child to school”: on multimodal and monomodal car users," Transportation, Springer, vol. 47(3), pages 1071-1102, June.
    13. Börjesson, Maria & Fosgerau, Mogens, 2015. "Response time patterns in a stated choice experiment," Journal of choice modelling, Elsevier, vol. 14(C), pages 48-58.
    14. Kamyar Hasanzadeh & Tiina Laatikainen & Marketta Kyttä, 2018. "A place-based model of local activity spaces: individual place exposure and characteristics," Journal of Geographical Systems, Springer, vol. 20(3), pages 227-252, July.
    15. Jesper Bláfoss Ingvardson & Sigal Kaplan & João de Abreu e Silva & Floridea Ciommo & Yoram Shiftan & Otto Anker Nielsen, 2020. "Existence, relatedness and growth needs as mediators between mode choice and travel satisfaction: evidence from Denmark," Transportation, Springer, vol. 47(1), pages 337-358, February.
    16. Charles Raux & Tai-Yu Ma & Eric Cornelis, 2011. "Variability versus stability in daily travel and activity behaviour. The case of a one week travel diary," Working Papers halshs-00612610, HAL.
    17. Abdul Rawoof Pinjari & Chandra R. Bhat, 2011. "Activity-based Travel Demand Analysis," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 10, Edward Elgar Publishing.
    18. Ron Buliung & Matthew Roorda & Tarmo Remmel, 2008. "Exploring spatial variety in patterns of activity-travel behaviour: initial results from the Toronto Travel-Activity Panel Survey (TTAPS)," Transportation, Springer, vol. 35(6), pages 697-722, November.
    19. Cirillo, C. & Axhausen, K.W., 2006. "Evidence on the distribution of values of travel time savings from a six-week diary," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(5), pages 444-457, June.
    20. Hao Wu & David Levinson & Andrew Owen, 2021. "Commute mode share and access to jobs across US metropolitan areas," Environment and Planning B, , vol. 48(4), pages 671-684, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:534:y:2019:i:c:s037843711931129x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.