IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v534y2019ics037843711931115x.html
   My bibliography  Save this article

Quantum systems for Monte Carlo methods and applications to fractional stochastic processes

Author

Listed:
  • Tudor, Sebastian F.
  • Chatterjee, Rupak
  • Nguyen, Lac
  • Huang, Yuping

Abstract

Random numbers are a fundamental and useful resource in science and engineering with important applications in simulation, machine learning and cyber-security. Quantum systems can produce true random numbers because of the inherent randomness at the core of quantum mechanics. As a consequence, quantum random number generators are an efficient method to generate random numbers on a large scale. We study in this paper the applications of a viable source of unbiased quantum random numbers (QRNs) whose statistical properties can be arbitrarily programmed without the need for any post-processing and that pass all standard randomness tests of the NIST and Dieharder test suites without any randomness extraction. Our method is based on measuring the arrival time of single photons in shaped temporal modes that are tailored with an electro-optical modulator. The advantages of our QRNs are shown via two applications: simulation of a fractional Brownian motion, which is a non-Markovian process, and option pricing under the fractional SABR model where the stochastic volatility process is assumed to be driven by a fractional Brownian motion. The results indicate that using the same number of random units, our QRNs achieve greater accuracy than those produced by standard pseudo-random number generators. Moreover, we demonstrate the advantages of our method via an increase in computational speed, efficiency, and convergence.

Suggested Citation

  • Tudor, Sebastian F. & Chatterjee, Rupak & Nguyen, Lac & Huang, Yuping, 2019. "Quantum systems for Monte Carlo methods and applications to fractional stochastic processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
  • Handle: RePEc:eee:phsmap:v:534:y:2019:i:c:s037843711931115x
    DOI: 10.1016/j.physa.2019.121901
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711931115X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.121901?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiro Akahori & Xiaoming Song & Tai-Ho Wang, 2022. "Probability Density of Lognormal Fractional SABR Model," Risks, MDPI, vol. 10(8), pages 1-27, August.
    2. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2015. "Hybrid scheme for Brownian semistationary processes," Papers 1507.03004, arXiv.org, revised May 2017.
    3. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Hybrid scheme for Brownian semistationary processes," Finance and Stochastics, Springer, vol. 21(4), pages 931-965, October.
    4. Elisa Alòs & Rupak Chatterjee & Sebastian F. Tudor & Tai-Ho Wang, 2019. "Target volatility option pricing in the lognormal fractional SABR model," Quantitative Finance, Taylor & Francis Journals, vol. 19(8), pages 1339-1356, August.
    5. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haoran Zheng & Jing Bai, 2024. "Quantum Leap: A Price Leap Mechanism in Financial Markets," Mathematics, MDPI, vol. 12(2), pages 1-27, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Tommi Sottinen & Josep Vives, 2019. "Decomposition formula for rough Volterra stochastic volatility models," Papers 1906.07101, arXiv.org, revised Aug 2019.
    2. Paul Gassiat, 2022. "Weak error rates of numerical schemes for rough volatility," Papers 2203.09298, arXiv.org, revised Feb 2023.
    3. Peter K. Friz & Paul Gassiat & Paolo Pigato, 2022. "Short-dated smile under rough volatility: asymptotics and numerics," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 463-480, March.
    4. Florian Bourgey & Stefano De Marco & Peter K. Friz & Paolo Pigato, 2023. "Local volatility under rough volatility," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1119-1145, October.
    5. Blanka Horvath & Josef Teichmann & Zan Zuric, 2021. "Deep Hedging under Rough Volatility," Papers 2102.01962, arXiv.org.
    6. Qinwen Zhu & Gr'egoire Loeper & Wen Chen & Nicolas Langren'e, 2020. "Markovian approximation of the rough Bergomi model for Monte Carlo option pricing," Papers 2007.02113, arXiv.org.
    7. Ofelia Bonesini & Antoine Jacquier & Alexandre Pannier, 2023. "Rough volatility, path-dependent PDEs and weak rates of convergence," Papers 2304.03042, arXiv.org.
    8. Siow Woon Jeng & Adem Kiliçman, 2021. "On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model," Mathematics, MDPI, vol. 9(22), pages 1-32, November.
    9. Qinwen Zhu & Gregoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian approximation of the rough Bergomi model for Monte Carlo option pricing," Post-Print hal-02910724, HAL.
    10. Antoine Jacquier & Zan Zuric, 2023. "Random neural networks for rough volatility," Papers 2305.01035, arXiv.org.
    11. Bolko, Anine E. & Christensen, Kim & Pakkanen, Mikko S. & Veliyev, Bezirgen, 2023. "A GMM approach to estimate the roughness of stochastic volatility," Journal of Econometrics, Elsevier, vol. 235(2), pages 745-778.
    12. Richard, Alexandre & Tan, Xiaolu & Yang, Fan, 2021. "Discrete-time simulation of Stochastic Volterra equations," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 109-138.
    13. Christian Bayer & Blanka Horvath & Aitor Muguruza & Benjamin Stemper & Mehdi Tomas, 2019. "On deep calibration of (rough) stochastic volatility models," Papers 1908.08806, arXiv.org.
    14. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2021. "American options in the Volterra Heston model," Working Papers hal-03178306, HAL.
    15. Elisa Alos & Rupak Chatterjee & Sebastian Tudor & Tai-Ho Wang, 2018. "Target volatility option pricing in lognormal fractional SABR model," Papers 1801.08215, arXiv.org.
    16. Florian Bourgey & Stefano De Marco & Emmanuel Gobet, 2022. "Weak approximations and VIX option price expansions in forward variance curve models," Papers 2202.10413, arXiv.org, revised May 2022.
    17. Dupret, Jean-Loup & Hainaut, Donatien, 2021. "Portfolio insurance under rough volatility and Volterra processes," LIDAM Discussion Papers ISBA 2021026, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Cao, Jiling & Kim, Jeong-Hoon & Kim, See-Woo & Zhang, Wenjun, 2020. "Rough stochastic elasticity of variance and option pricing," Finance Research Letters, Elsevier, vol. 37(C).
    19. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2022. "American options in the Volterra Heston model," Post-Print hal-03178306, HAL.
    20. Qinwen Zhu & Gregoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian approximation of the rough Bergomi model for Monte Carlo option pricing," Working Papers hal-02910724, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:534:y:2019:i:c:s037843711931115x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.