IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v520y2019icp217-231.html
   My bibliography  Save this article

Generalized entropy plane based on permutation entropy and distribution entropy analysis for complex time series

Author

Listed:
  • Dai, Yimei
  • He, Jiayi
  • Wu, Yue
  • Chen, Shijian
  • Shang, Pengjian

Abstract

Entropy is an accessible way to work as a measure of the irregularity and the uncertainty between the predicting knowledge and the given time series. Statistical complexity measure (SCM) combining Shannon entropy and the extensive Jensen–Shannon divergence provides important additional information regarding the peculiarities of the underlying probability distribution, not already detected by the entropy. In this paper, we extend the traditional complexity-entropy causality plane, which applies the diagram of SCM versus normalized Shannon entropy, to two generalized complexity-entropy plane based on Permutation entropy (PE) and Permuted distribution entropy (PEDisEn). Moreover, as the important extension of the Shannon entropy, the Tsallis entropy and Rényi entropy are used to construct the plane. We discuss the parameter selection for the PE plane and PEDisEn plane respectively. Outlier detection is recently a heated point focusing on discovering patterns that occur infrequently in the time series in data mining. However, there exists few entropy plane based methods in outlier detection. We apply the proposed procedure to the real world data for outlier detection. It turns out that the generalized entropy plane is robust to the type of original series and is efficient for detecting outliers.

Suggested Citation

  • Dai, Yimei & He, Jiayi & Wu, Yue & Chen, Shijian & Shang, Pengjian, 2019. "Generalized entropy plane based on permutation entropy and distribution entropy analysis for complex time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 217-231.
  • Handle: RePEc:eee:phsmap:v:520:y:2019:i:c:p:217-231
    DOI: 10.1016/j.physa.2019.01.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119300172
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.01.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Haifeng & Shang, Pengjian & Xia, Jianan, 2016. "Compositional segmentation and complexity measurement in stock indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 67-73.
    2. Struzik, Zbigniew R. & Siebes, Arno P.J.M., 2002. "Wavelet transform based multifractal formalism in outlier detection and localisation for financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 309(3), pages 388-402.
    3. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
    4. Tang, Yi & Zhao, An & Ren, Ying-yu & Dou, Fu-Xiang & Jin, Ning-De, 2016. "Gas–liquid two-phase flow structure in the multi-scale weighted complexity entropy causality plane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 324-335.
    5. Borges, Ernesto P., 2004. "A possible deformed algebra and calculus inspired in nonextensive thermostatistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 95-101.
    6. Douglas M. Hawkins, 1980. "Critical Values for Identifying Outliers," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(1), pages 95-96, March.
    7. Lamberti, P.W & Martin, M.T & Plastino, A & Rosso, O.A, 2004. "Intensive entropic non-triviality measure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 334(1), pages 119-131.
    8. Yang, Pengbo & Shang, Pengjian & Lin, Aijing, 2017. "Financial time series analysis based on effective phase transfer entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 398-408.
    9. Ribeiro, Haroldo V. & Zunino, Luciano & Mendes, Renio S. & Lenzi, Ervin K., 2012. "Complexity–entropy causality plane: A useful approach for distinguishing songs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2421-2428.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Gangjin & Wei, Daijun & Li, Xiangbo & Wang, Ningkui, 2023. "A novel method for local anomaly detection of time series based on multi entropy fusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    2. Wang, Zhuo & Shang, Pengjian, 2021. "Generalized entropy plane based on multiscale weighted multivariate dispersion entropy for financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Qin, Guyue & Shang, Pengjian, 2021. "Analysis of time series using a new entropy plane based on past entropy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2019. "Exploring disorder and complexity in the cryptocurrency space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 548-556.
    2. Fernandes, Leonardo H.S. & de Araujo, Fernando H.A. & Tabak, Benjamin M., 2021. "Insights from the (in)efficiency of Chinese sectoral indices during COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    3. Zhang, Boyi & Shang, Pengjian & Zhou, Qin, 2021. "The identification of fractional order systems by multiscale multivariate analysis," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    4. Zunino, Luciano & Ribeiro, Haroldo V., 2016. "Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 679-688.
    5. Dai, Yimei & Zhang, Hesheng & Mao, Xuegeng & Shang, Pengjian, 2018. "Complexity–entropy causality plane based on power spectral entropy for complex time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 501-514.
    6. Bariviera, Aurelio F. & Font-Ferrer, Alejandro & Sorrosal-Forradellas, M. Teresa & Rosso, Osvaldo A., 2019. "An information theory perspective on the informational efficiency of gold price," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    7. López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    8. Aurelio Fernandez Bariviera & María Belén Guercio & Lisana B. Martinez & Osvaldo A. Rosso, 2015. "The (in)visible hand in the Libor market: an information theory approach," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 88(8), pages 1-9, August.
    9. Dias, João, 2013. "Spanning trees and the Eurozone crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5974-5984.
    10. Marco A. S. Trindade & Sergio Floquet & Lourival M. S. Filho, 2018. "Portfolio Theory, Information Theory and Tsallis Statistics," Papers 1811.07237, arXiv.org, revised Oct 2019.
    11. Lima, David H.S. & Aquino, Andre L.L. & Rosso, Osvaldo A. & Curado, Marilia, 2024. "Characterization of task allocation techniques in data centers based on information theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    12. de Novaes Pires Leite, Gustavo & da Cunha, Guilherme Tenório Maciel & dos Santos Junior, José Guilhermino & Araújo, Alex Maurício & Rosas, Pedro André Carvalho & Stosic, Tatijana & Stosic, Borko & Ros, 2021. "Alternative fault detection and diagnostic using information theory quantifiers based on vibration time-waveforms from condition monitoring systems: Application to operational wind turbines," Renewable Energy, Elsevier, vol. 164(C), pages 1183-1194.
    13. Argyroudis, George S. & Siokis, Fotios M., 2019. "Spillover effects of Great Recession on Hong-Kong’s Real Estate Market: An analysis based on Causality Plane and Tsallis Curves of Complexity–Entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 576-586.
    14. Jauregui, M. & Zunino, L. & Lenzi, E.K. & Mendes, R.S. & Ribeiro, H.V., 2018. "Characterization of time series via Rényi complexity–entropy curves," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 74-85.
    15. De Micco, Luciana & Fernández, Juana Graciela & Larrondo, Hilda A. & Plastino, Angelo & Rosso, Osvaldo A., 2012. "Sampling period, statistical complexity, and chaotic attractors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2564-2575.
    16. Aurelio F. Bariviera & Luciano Zunino & M. Belen Guercio & Lisana B. Martinez & Osvaldo A. Rosso, 2015. "Efficiency and credit ratings: a permutation-information-theory analysis," Papers 1509.01839, arXiv.org.
    17. Aurelio Fernandez Bariviera & M. Bel'en Guercio & Lisana B. Martinez, 2015. "Data manipulation detection via permutation information theory quantifiers," Papers 1501.04123, arXiv.org.
    18. Fernandes, Leonardo H.S. & de Araújo, Fernando H.A. & Silva, Igor E.M. & Neto, Jusie S.P., 2021. "Macroeconophysics indicator of economic efficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    19. Trindade, Marco A.S. & Floquet, Sergio & Filho, Lourival M. Silva, 2020. "Portfolio theory, information theory and Tsallis statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    20. Bariviera, Aurelio F. & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2016. "Libor at crossroads: Stochastic switching detection using information theory quantifiers," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 172-182.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:520:y:2019:i:c:p:217-231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.