IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v168y2023ics0960077923000437.html
   My bibliography  Save this article

Traffic-driven explosive synchronization with adaptive local routing in complex networks

Author

Listed:
  • Chen, Jie
  • Cao, Jinde
  • Huang, Wei

Abstract

Despite extensive researches on explosive synchronization, the interplay between it and traffic dynamics has not received enough attentions. In this paper, we develop a traffic-driven Kuramoto-like synchronization model, in which pathway and strength of synchronization are determined by directed flow between the oscillator and its neighbors. We show how combining this model with an adaptive traffic routing based on local dynamic information of phase mismatches induces the explosive synchronization with hysteresis loop, width of which is produced by the difference between forward and backward critical coupling strengths and can be maximized by adjustable routing factors. We demonstrate the validity of such a mechanism in producing explosive synchronization phenomenon for different traffic flow levels, initial frequency distributions, network structures, as well as for both homogeneous and heterogeneous networks. Interestingly, it is found that the critical strength of forward coupling is easily affected by these factors, but backward transition behavior is robust with respect to them. All results indicate that our study can provide a new insight for the control of synchronization behavior in the real-world complex systems.

Suggested Citation

  • Chen, Jie & Cao, Jinde & Huang, Wei, 2023. "Traffic-driven explosive synchronization with adaptive local routing in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923000437
    DOI: 10.1016/j.chaos.2023.113142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923000437
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kevin P. O’Keeffe & Hyunsuk Hong & Steven H. Strogatz, 2017. "Oscillators that sync and swarm," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    2. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    3. Chen, Jie & Wu, Chao-Yun & Li, Ming & Hu, Mao-Bin, 2019. "Hybrid traffic dynamics on coupled networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 98-104.
    4. Xiao, Feng & Xie, Lingyun & Wei, Bo, 2022. "Explosive synchronization of weighted mobile oscillators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Gang & He, Jing & Luo, Zhiyong & Yao, Xiaobai & Fan, Qinjin, 2024. "Understanding route choice behaviors' impact on traffic throughput in a dynamic transportation network," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chengjiang & Wang, Li & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2017. "Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 18-29.
    2. Tang, Liang & Jing, Ke & He, Jie & Stanley, H. Eugene, 2016. "Robustness of assembly supply chain networks by considering risk propagation and cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 129-139.
    3. Shogo Mizutaka & Kousuke Yakubo, 2017. "Structural instability of large-scale functional networks," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-11, July.
    4. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    5. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    6. Hernandez-Fajardo, Isaac & Dueñas-Osorio, Leonardo, 2013. "Probabilistic study of cascading failures in complex interdependent lifeline systems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 260-272.
    7. Yu, Haitao & Wang, Jiang & Liu, Chen & Deng, Bin & Wei, Xile, 2014. "Delay-induced synchronization transitions in modular scale-free neuronal networks with hybrid electrical and chemical synapses," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 25-34.
    8. Sgrignoli, Paolo & Metulini, Rodolfo & Schiavo, Stefano & Riccaboni, Massimo, 2015. "The relation between global migration and trade networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 245-260.
    9. Zhou, Yaoming & Wang, Junwei, 2018. "Efficiency of complex networks under failures and attacks: A percolation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 658-664.
    10. Monsalve, Mauricio & de la Llera, Juan Carlos, 2019. "Data-driven estimation of interdependencies and restoration of infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 167-180.
    11. Liu, Huan & Tatano, Hirokazu & Pflug, Georg & Hochrainer-Stigler, Stefan, 2021. "Post-disaster recovery in industrial sectors: A Markov process analysis of multiple lifeline disruptions," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    12. Liu, Run-Ran & Chu, Changchang & Meng, Fanyuan, 2023. "Higher-order interdependent percolation on hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    13. Krawiecki, A., 2018. "Spin glass transition in a simple variant of the Ising model on multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 773-790.
    14. Shekhtman, Louis M. & Danziger, Michael M. & Havlin, Shlomo, 2016. "Recent advances on failure and recovery in networks of networks," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 28-36.
    15. Weihua Lei & Luiz G. A. Alves & Luís A. Nunes Amaral, 2022. "Forecasting the evolution of fast-changing transportation networks using machine learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Wang, Gang-Jin & Chen, Yang-Yang & Si, Hui-Bin & Xie, Chi & Chevallier, Julien, 2021. "Multilayer information spillover networks analysis of China’s financial institutions based on variance decompositions," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 325-347.
    17. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    18. Kyu-Min Lee & Kwang-Il Goh, 2016. "Strength of weak layers in cascading failures on multiplex networks: case of the international trade network," Papers 1603.05181, arXiv.org, revised May 2016.
    19. Leonardo Massai & Giacomo Como & Fabio Fagnani, 2019. "Equilibria and Systemic Risk in Saturated Networks," Papers 1912.04815, arXiv.org, revised Jan 2021.
    20. Carballosa, Alejandro & Muñuzuri, Alberto P., 2022. "Intermittency regimes of poorly-mixed chemical oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923000437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.