IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v512y2018icp316-329.html
   My bibliography  Save this article

Novel complex network model and its application in identifying critical components of power grid

Author

Listed:
  • Chen, Chong
  • Zhou, Xuan
  • Li, Zhuo
  • He, Zhiheng
  • Li, Zhengtian
  • Lin, Xiangning

Abstract

A novel power grid complex network model in order to in-depth characterize the power grid with its complexity is proposed in this paper, based on the power flow transmission network (PFTN). With novel definitions, considering the path, distance and capacity of power transmission comprehensively, the complex network model can comply with the basic electrical law and the physical constraints of power grid. On this basis, an index set for identifying critical buses and branches within the power grid is designed. The index set includes distance and capability degree, hub, distance and capability betweenness, which can fully evaluate the role of nodes or branches in composing the structure and maintaining the system operation of the power grid. Simulations on both IEEE benchmark systems and a provincial power grid in China are conducted using the proposed model, with critical components identification yielding good results. By comparison with existing methods, the effectiveness and superiority of the proposed model are verified.

Suggested Citation

  • Chen, Chong & Zhou, Xuan & Li, Zhuo & He, Zhiheng & Li, Zhengtian & Lin, Xiangning, 2018. "Novel complex network model and its application in identifying critical components of power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 316-329.
  • Handle: RePEc:eee:phsmap:v:512:y:2018:i:c:p:316-329
    DOI: 10.1016/j.physa.2018.08.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118310379
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.08.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Kai & Zhang, Bu-han & Zhang, Zhe & Yin, Xiang-gen & Wang, Bo, 2011. "An electrical betweenness approach for vulnerability assessment of power grids considering the capacity of generators and load," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4692-4701.
    2. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    3. Wang, Zhuoyang & Chen, Guo & Hill, David J. & Dong, Zhao Yang, 2016. "A power flow based model for the analysis of vulnerability in power networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 105-115.
    4. Wu, Di & Ma, Feng & Javadi, Milad & Thulasiraman, Krishnaiya & Bompard, Ettore & Jiang, John N., 2017. "A study of the impacts of flow direction and electrical constraints on vulnerability assessment of power grid using electrical betweenness measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 295-309.
    5. Lingen Luo & Marti Rosas-Casals, 2015. "Correlating empirical data and extended topological measures in power grid networks," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 11(1), pages 82-96.
    6. Ettore Bompard & Lingen Luo & Enrico Pons, 2015. "A perspective overview of topological approaches for vulnerability analysis of power transmission grids," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 11(1), pages 15-26.
    7. Lucas Cuadra & Sancho Salcedo-Sanz & Javier Del Ser & Silvia Jiménez-Fernández & Zong Woo Geem, 2015. "A Critical Review of Robustness in Power Grids Using Complex Networks Concepts," Energies, MDPI, vol. 8(9), pages 1-55, August.
    8. Pagani, Giuliano Andrea & Aiello, Marco, 2013. "The Power Grid as a complex network: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(11), pages 2688-2700.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salcedo-Sanz, S. & Cuadra, L., 2019. "Quasi scale-free geographically embedded networks over DLA-generated aggregates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1286-1305.
    2. Jingyi Wang & Danqi Liu & Jianwen Feng & Yi Zhao, 2023. "Distributed Optimization Control for Heterogeneous Multiagent Systems under Directed Topologies," Mathematics, MDPI, vol. 11(6), pages 1-16, March.
    3. Meng, Yangyang & Tian, Xiangliang & Li, Zhongwen & Zhou, Wei & Zhou, Zhijie & Zhong, Maohua, 2020. "Comparison analysis on complex topological network models of urban rail transit: A case study of Shenzhen Metro in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Di & Ma, Feng & Javadi, Milad & Thulasiraman, Krishnaiya & Bompard, Ettore & Jiang, John N., 2017. "A study of the impacts of flow direction and electrical constraints on vulnerability assessment of power grid using electrical betweenness measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 295-309.
    2. Zou, Yanli & Wang, Ruirui & Gao, Zheng, 2020. "Improve synchronizability of a power grid through power allocation and topology adjustment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    3. Abedi, Amin & Gaudard, Ludovic & Romerio, Franco, 2019. "Review of major approaches to analyze vulnerability in power system," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 153-172.
    4. Lucas Cuadra & Miguel Del Pino & José Carlos Nieto-Borge & Sancho Salcedo-Sanz, 2017. "Optimizing the Structure of Distribution Smart Grids with Renewable Generation against Abnormal Conditions: A Complex Networks Approach with Evolutionary Algorithms," Energies, MDPI, vol. 10(8), pages 1-31, July.
    5. Tianhua Li & Yanchao Du & Yongbo Yuan, 2019. "Use of Variable Fuzzy Clustering to Quantify the Vulnerability of a Power Grid to Earthquake Damage," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    6. Lucas Cuadra & Sancho Salcedo-Sanz & Javier Del Ser & Silvia Jiménez-Fernández & Zong Woo Geem, 2015. "A Critical Review of Robustness in Power Grids Using Complex Networks Concepts," Energies, MDPI, vol. 8(9), pages 1-55, August.
    7. Espejo, Rafael & Lumbreras, Sara & Ramos, Andres, 2018. "Analysis of transmission-power-grid topology and scalability, the European case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 383-395.
    8. Ferrario, E. & Poulos, A. & Castro, S. & de la Llera, J.C. & Lorca, A., 2022. "Predictive capacity of topological measures in evaluating seismic risk and resilience of electric power networks," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    9. Gianluca Fulli & Marcelo Masera & Catalin Felix Covrig & Francesco Profumo & Ettore Bompard & Tao Huang, 2017. "The EU Electricity Security Decision-Analytic Framework: Status and Perspective Developments," Energies, MDPI, vol. 10(4), pages 1-20, March.
    10. Kashyap, G. & Ambika, G., 2019. "Link deletion in directed complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 631-643.
    11. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    12. Rocchetta, Roberto, 2022. "Enhancing the resilience of critical infrastructures: Statistical analysis of power grid spectral clustering and post-contingency vulnerability metrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    13. Hu, Aihua & Cao, Jinde & Hu, Manfeng & Guo, Liuxiao, 2014. "Cluster synchronization in directed networks of non-identical systems with noises via random pinning control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 537-548.
    14. Zhang, Ding-Xue & Zhao, Dan & Guan, Zhi-Hong & Wu, Yonghong & Chi, Ming & Zheng, Gui-Lin, 2016. "Probabilistic analysis of cascade failure dynamics in complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 299-309.
    15. Ma, Xiangyu & Zhou, Huijie & Li, Zhiyi, 2021. "On the resilience of modern power systems: A complex network perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    16. Ziqi Wang & Jinghan He & Alexandru Nechifor & Dahai Zhang & Peter Crossley, 2017. "Identification of Critical Transmission Lines in Complex Power Networks," Energies, MDPI, vol. 10(9), pages 1-19, August.
    17. Zohre Alipour & Mohammad Ali Saniee Monfared & Enrico Zio, 2014. "Comparing topological and reliability-based vulnerability analysis of Iran power transmission network," Journal of Risk and Reliability, , vol. 228(2), pages 139-151, April.
    18. Tio, Adonis E. & Hill, David J. & Ma, Jin, 2020. "Can graph properties determine future grid adequacy for power injection diversity?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    19. Wang, Shuliang & Lv, Wenzhuo & Zhang, Jianhua & Luan, Shengyang & Chen, Chen & Gu, Xifeng, 2021. "Method of power network critical nodes identification and robustness enhancement based on a cooperative framework," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    20. Gjorgiev, Blazhe & Sansavini, Giovanni, 2022. "Identifying and assessing power system vulnerabilities to transmission asset outages via cascading failure analysis," Reliability Engineering and System Safety, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:512:y:2018:i:c:p:316-329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.