IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i6p1479-d1100543.html
   My bibliography  Save this article

Distributed Optimization Control for Heterogeneous Multiagent Systems under Directed Topologies

Author

Listed:
  • Jingyi Wang

    (School of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, China)

  • Danqi Liu

    (School of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, China)

  • Jianwen Feng

    (School of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, China)

  • Yi Zhao

    (School of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, China)

Abstract

This paper focuses on the solutions for the distributed optimization coordination problem (DOCP) for heterogeneous multiagent systems under directed topologies. To begin with, a different convex optimization problem is proposed, which implies a weighted average of the objective function of each agent. Sufficient conditions are set to ensure the unique solution for the DOCP. Then, despite the external disruption, a distributed control mechanism is constructed to drive the state of each agent to the auxiliary state in a finite time. Furthermore, it is demonstrated that the outputs of all agents can achieve the optimal value, ensuring global convergence. Moreover, the controller design rule is expanded with event-triggered communication, and there is no Zeno behavior. Finally, to exemplify the usefulness of the theoretical conclusions, a simulation example is offered.

Suggested Citation

  • Jingyi Wang & Danqi Liu & Jianwen Feng & Yi Zhao, 2023. "Distributed Optimization Control for Heterogeneous Multiagent Systems under Directed Topologies," Mathematics, MDPI, vol. 11(6), pages 1-16, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1479-:d:1100543
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/6/1479/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/6/1479/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Chao & Li, Rong & Liu, Bo, 2022. "Group-bipartite consensus of heterogeneous multi-agent systems over signed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    2. Chen, Chong & Zhou, Xuan & Li, Zhuo & He, Zhiheng & Li, Zhengtian & Lin, Xiangning, 2018. "Novel complex network model and its application in identifying critical components of power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 316-329.
    3. Cai, Shuiming & Zhou, Feilong & He, Qinbin, 2019. "Fixed-time cluster lag synchronization in directed heterogeneous community networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 128-142.
    4. Ruan, Xiaoli & Xu, Chen & Feng, Jianwen & Wang, Jingyi & Zhao, Yi, 2022. "Adaptive dynamic event-triggered control for multi-agent systems with matched uncertainties under directed topologies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ankang Zhang & Xiaoling Wang, 2023. "RBFNN-Based Distributed Coverage Control on an Unknown Region," Mathematics, MDPI, vol. 12(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Weixun & Du, Xiangyang & Xiao, Jingyu & Zhang, Limin, 2023. "Bipartite hybrid formation tracking control for heterogeneous multi-agent systems in multi-group cooperative-competitive networks," Applied Mathematics and Computation, Elsevier, vol. 456(C).
    2. Shi, Jinyao & Zhou, Peipei & Cai, Shuiming & Jia, Qiang, 2023. "Exponential synchronization for multi-weighted dynamic networks via finite-level quantized control with adaptive scaling gain," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    3. Shi, Jinyao & Zhou, Peipei & Cai, Shuiming, 2024. "On fixed-time interlayer synchronization of two-layer multiweighted complex dynamic networks: An economic and practical non-chattering adaptive control approach," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    4. Zheng, Ying & Wu, Yayong & Jiang, Guo-Ping, 2024. "Exploring synchronizability of complex dynamical networks from edges perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    5. Sun, Fenglan & Han, Yunpeng & Wu, Xiaoshuai & Zhu, Wei & Kurths, Jürgen, 2024. "Group consensus of fractional-order heterogeneous multi-agent systems with random packet losses and communication delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    6. Salcedo-Sanz, S. & Cuadra, L., 2019. "Quasi scale-free geographically embedded networks over DLA-generated aggregates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1286-1305.
    7. Griffin, Christopher & Squicciarini, Anna & Jia, Feiran, 2022. "Consensus in complex networks with noisy agents and peer pressure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    8. Xiaoli Ruan & Jiayi Cai & Zhaojing Wang & Chen Wang & Huali Yang, 2023. "Observer-Based Dynamic Event-Triggered Tracking Consensus for Switched Multi-Agent Systems," Mathematics, MDPI, vol. 11(13), pages 1-16, June.
    9. Lin, Hai & Wang, Jingcheng, 2022. "Pinning synchronization of complex networks with time-varying outer coupling and nonlinear multiple time-varying delay coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    10. Meng, Yangyang & Tian, Xiangliang & Li, Zhongwen & Zhou, Wei & Zhou, Zhijie & Zhong, Maohua, 2020. "Comparison analysis on complex topological network models of urban rail transit: A case study of Shenzhen Metro in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    11. Leng, Hui & Wu, Zhaoyan, 2019. "Impulsive synchronization of complex-variable network with distributed time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    12. Chen, Xiaolu & Weng, Tongfeng & Li, Chunzi & Yang, Huijie, 2022. "Synchronization of reservoir computing models via a nonlinear controller," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    13. Xu, Bingchu & Yang, Yongqing, 2022. "Group consensus of nonlinear multiagent system with switching topology under DoS attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1479-:d:1100543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.