IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v508y2018icp199-212.html
   My bibliography  Save this article

The pedestrian flow characteristics of Y-shaped channel

Author

Listed:
  • Qiu, Guo
  • Song, Rui
  • He, Shiwei
  • Yin, Weichuan

Abstract

To explore the variation of pedestrian density in merging channel of the subway station, a modified lattice gas model with biased random walkers is proposed to simulate the merging process of pedestrian flows in the Y-shaped channel in peak hour under open boundary conditions. The model consists of both square and triangular lattices and uses C ++ and QT creator to mimic the merging process of two inlet flows intersected at any angle. After simulation, we propose a three-dimensional phase diagram and analyze the relationship between the merging flow density and the inlet channel width, as well as the offset angle. The simulation results also show that the jamming transition of the Y-shaped channel occurs when the inlet flow densities are 0.4 and 0.3 respectively, and the maximum merging flow density is at around 0.58. In addition, the merging flow density has a correlation with the inlet channel width and the strength coefficient of pedestrian movement, but is not affected by the channel’s offset angle.

Suggested Citation

  • Qiu, Guo & Song, Rui & He, Shiwei & Yin, Weichuan, 2018. "The pedestrian flow characteristics of Y-shaped channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 199-212.
  • Handle: RePEc:eee:phsmap:v:508:y:2018:i:c:p:199-212
    DOI: 10.1016/j.physa.2018.05.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711830551X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.05.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Ren-Yong, 2014. "New insights into discretization effects in cellular automata models for pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 1-11.
    2. Hua-Yan Shang & Hai-Jun Huang & Wen-Xiang Wu, 2012. "Effects Of Right-Turn Vehicles On Traffic Flow," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 23(02), pages 1-13.
    3. Muramatsu, Masakuni & Nagatani, Takashi, 2000. "Jamming transition of pedestrian traffic at a crossing with open boundaries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 286(1), pages 377-390.
    4. Nishinari, Katsuhiro & Sugawara, Ken & Kazama, Toshiya & Schadschneider, Andreas & Chowdhury, Debashish, 2006. "Modelling of self-driven particles: Foraging ants and pedestrians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 372(1), pages 132-141.
    5. Cirillo, E.N.M. & Colangeli, M. & Muntean, A., 2017. "Trapping in bottlenecks: Interplay between microscopic dynamics and large scale effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 488(C), pages 30-38.
    6. Tajima, Yusuke & Nagatani, Takashi, 2002. "Clogging transition of pedestrian flow in T-shaped channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 303(1), pages 239-250.
    7. Hou, Lei & Liu, Jian-Guo & Pan, Xue & Wang, Bing-Hong, 2014. "A social force evacuation model with the leadership effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 93-99.
    8. Nagai, Ryoichi & Nagatani, Takashi & Isobe, Motoshige & Adachi, Taku, 2004. "Effect of exit configuration on evacuation of a room without visibility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 712-724.
    9. Nagai, Ryoichi & Nagatani, Takashi, 2006. "Jamming transition in counter flow of slender particles on square lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 503-512.
    10. Muramatsu, Masakuni & Irie, Tunemasa & Nagatani, Takashi, 1999. "Jamming transition in pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 267(3), pages 487-498.
    11. Li, Shengnan & Li, Xingang & Qu, Yunchao & Jia, Bin, 2015. "Block-based floor field model for pedestrian’s walking through corner," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 337-353.
    12. Han, Yanbin & Liu, Hong, 2017. "Modified social force model based on information transmission toward crowd evacuation simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 499-509.
    13. Zhi Ming Fang & Wei Lv & Li-Xue Jiang & Qing-Feng Xu & Wei-Guo Song, 2015. "Observation, simulation and optimization of the movement of passengers with baggage in railway station," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 26(11), pages 1-15.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Tie-Qiao & Zhang, Bo-Tao & Zhang, Jian & Wang, Tao, 2019. "Statistical analysis and modeling of pedestrian flow in university canteen during peak period," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 29-40.
    2. Fu, Zhijian & Yang, Yunjia & Feng, Yujing & Xiong, Xingwen & Yuan, Zhilu & Luo, Lin, 2024. "Experimental study on pedestrian behavior in right-angled corners: Influence of departure position and passage width," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    3. Tang, Siyi & Zheng, Fangfang & Zheng, Nan & Liu, Xiaobo, 2024. "An efficient multi-modal urban transportation network partitioning approach for three-dimensional macroscopic fundamental diagram," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shang, Hua-Yan & Huang, Hai-Jun & Zhang, Yi-Ming, 2015. "An extended mobile lattice gas model allowing pedestrian step size variable," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 283-293.
    2. Geng, Zhongfei & Li, Xingli & Kuang, Hua & Bai, Xuecen & Fan, Yanhong, 2019. "Effect of uncertain information on pedestrian dynamics under adverse sight conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 681-691.
    3. Ma, Peijie & Jiang, Yanqun & Zhu, Junfang & Chen, Bokui, 2019. "The effect of escape signs on the pedestrians evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    4. Guo, Xiwei & Chen, Jianqiao & Zheng, Yaochen & Wei, Junhong, 2012. "A heterogeneous lattice gas model for simulating pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 582-592.
    5. Li, Xingli & Guo, Fang & Kuang, Hua & Geng, Zhongfei & Fan, Yanhong, 2019. "An extended cost potential field cellular automaton model for pedestrian evacuation considering the restriction of visual field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 47-56.
    6. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    7. Guo, Ning & Hu, Mao-Bin & Jiang, Rui, 2017. "Impact of variable body size on pedestrian dynamics by heuristics-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 109-114.
    8. Wang, Li & Liu, Mao & Meng, Bo, 2013. "Incorporating topography in a cellular automata model to simulate residents evacuation in a mountain area in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(3), pages 520-528.
    9. Song, Weiguo & Xu, Xuan & Wang, Bing-Hong & Ni, Shunjiang, 2006. "Simulation of evacuation processes using a multi-grid model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 492-500.
    10. Varas, A. & Cornejo, M.D. & Mainemer, D. & Toledo, B. & Rogan, J. & Muñoz, V. & Valdivia, J.A., 2007. "Cellular automaton model for evacuation process with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 631-642.
    11. Ma, Jian & Song, Wei-guo & Zhang, Jun & Lo, Siu-ming & Liao, Guang-xuan, 2010. "k-Nearest-Neighbor interaction induced self-organized pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2101-2117.
    12. Li, Lin & Yu, Zhonghai & Chen, Yang, 2014. "Evacuation dynamic and exit optimization of a supermarket based on particle swarm optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 157-172.
    13. Li, Yang & Chen, Maoyin & Zheng, Xiaoping & Dou, Zhan & Cheng, Yuan, 2020. "Relationship between behavior aggressiveness and pedestrian dynamics using behavior-based cellular automata model," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    14. Li, Xingli & Guo, Fang & Kuang, Hua & Zhou, Huaguo, 2017. "Effect of psychological tension on pedestrian counter flow via an extended cost potential field cellular automaton model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 487(C), pages 47-57.
    15. Xie, Qimiao & Wu, Yaxin & Wang, Yitian & Zhang, Hui, 2024. "A multi-grid evacuation model considering the effects of different turning types," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    16. Zhang, Xinwei & Zhang, Peihong & Zhong, Maohua, 2021. "A dual adaptive cellular automaton model based on a composite field and pedestrian heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    17. Sun, Yi, 2018. "Kinetic Monte Carlo simulations of two-dimensional pedestrian flow models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 836-847.
    18. Li, Xiang & Sun, Jian-Qiao, 2016. "Effects of vehicle–pedestrian interaction and speed limit on traffic performance of intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 335-347.
    19. Zheng, Ying & Jia, Bin & Li, Xin-Gang & Zhu, Nuo, 2011. "Evacuation dynamics with fire spreading based on cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3147-3156.
    20. Zhou, Zi-Xuan & Nakanishi, Wataru & Asakura, Yasuo, 2021. "Route choice in the pedestrian evacuation: Microscopic formulation based on visual information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:508:y:2018:i:c:p:199-212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.