IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v495y2018icp49-58.html
   My bibliography  Save this article

On the role of words in the network structure of texts: Application to authorship attribution

Author

Listed:
  • Akimushkin, Camilo
  • Amancio, Diego R.
  • Oliveira, Osvaldo N.

Abstract

Well-established automatic analyses of texts mainly consider frequencies of linguistic units, e.g. letters, words, and bigrams. In a recent, alternative approach, medium and large-scale text structures were used in opposition to the belief that text structure is dominated by the language features. In this paper, we introduce a generalized similarity measure to compare texts which accounts for both the network structure of texts and the role of individual words in the networks. The similarity measure is used for authorship attribution of three collections of books, each composed of 8 authors and 10 books per author. High accuracy rates were obtained with typical values between 90% and 98.75%, much higher than with the traditional term frequency-inverse document frequency (tf-idf) approach for the same collections. These accuracies are also higher than those obtained solely with the topology of networks. We conclude that the different properties of specific words on the macroscopic scale structure of a whole text are as relevant as their frequency of appearance; conversely, considering the identity of nodes brings further knowledge about a piece of text represented as a network.

Suggested Citation

  • Akimushkin, Camilo & Amancio, Diego R. & Oliveira, Osvaldo N., 2018. "On the role of words in the network structure of texts: Application to authorship attribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 49-58.
  • Handle: RePEc:eee:phsmap:v:495:y:2018:i:c:p:49-58
    DOI: 10.1016/j.physa.2017.12.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117312979
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.12.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liang, Wei, 2017. "Spectra of English evolving word co-occurrence networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 802-808.
    2. D. R. Amancio & M. G. V. Nunes & O. N. Oliveira & L. F. Costa, 2012. "Using complex networks concepts to assess approaches for citations in scientific papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 827-842, June.
    3. Amancio, Diego R. & Oliveira Jr., Osvaldo N. & Costa, Luciano da F., 2012. "Structure–semantics interplay in complex networks and its effects on the predictability of similarity in texts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(18), pages 4406-4419.
    4. Amancio, Diego Raphael & Oliveira, Osvaldo Novais & da Fontoura Costa, Luciano, 2012. "Three-feature model to reproduce the topology of citation networks and the effects from authors’ visibility on their h-index," Journal of Informetrics, Elsevier, vol. 6(3), pages 427-434.
    5. Borut Lužar & Zoran Levnajić & Janez Povh & Matjaž Perc, 2014. "Community Structure and the Evolution of Interdisciplinarity in Slovenia's Scientific Collaboration Network," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-5, April.
    6. J. Kruskal, 1964. "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis," Psychometrika, Springer;The Psychometric Society, vol. 29(1), pages 1-27, March.
    7. Diego R Amancio, 2015. "Probing the Topological Properties of Complex Networks Modeling Short Written Texts," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-17, February.
    8. Mehri, Ali & Darooneh, Amir H. & Shariati, Ashrafalsadat, 2012. "The complex networks approach for authorship attribution of books," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2429-2437.
    9. Viana, Matheus P. & Amancio, Diego R. & da F. Costa, Luciano, 2013. "On time-varying collaboration networks," Journal of Informetrics, Elsevier, vol. 7(2), pages 371-378.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian-Daniel Curiac & Alex Doboli & Daniel-Ioan Curiac, 2022. "Co-Occurrence-Based Double Thresholding Method for Research Topic Identification," Mathematics, MDPI, vol. 10(17), pages 1-10, August.
    2. Mihailo Škorić & Ranka Stanković & Milica Ikonić Nešić & Joanna Byszuk & Maciej Eder, 2022. "Parallel Stylometric Document Embeddings with Deep Learning Based Language Models in Literary Authorship Attribution," Mathematics, MDPI, vol. 10(5), pages 1-27, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corrêa Jr., Edilson A. & Silva, Filipi N. & da F. Costa, Luciano & Amancio, Diego R., 2017. "Patterns of authors contribution in scientific manuscripts," Journal of Informetrics, Elsevier, vol. 11(2), pages 498-510.
    2. Diego R. Amancio & Osvaldo N. Oliveira jr & Luciano F. Costa, 2015. "Topological-collaborative approach for disambiguating authors’ names in collaborative networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 465-485, January.
    3. de Arruda, Henrique F. & Marinho, Vanessa Q. & Lima, Thales S. & Amancio, Diego R. & Costa, Luciano da F., 2018. "An image analysis approach to text analytics based on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 110-120.
    4. Tohalino, Jorge V. & Amancio, Diego R., 2018. "Extractive multi-document summarization using multilayer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 526-539.
    5. Adilson Vital & Diego R. Amancio, 2022. "A comparative analysis of local similarity metrics and machine learning approaches: application to link prediction in author citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(10), pages 6011-6028, October.
    6. Jorge A. V. Tohalino & Laura V. C. Quispe & Diego R. Amancio, 2021. "Analyzing the relationship between text features and grants productivity," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4255-4275, May.
    7. Zhao, Qihang & Feng, Xiaodong, 2022. "Utilizing citation network structure to predict paper citation counts: A Deep learning approach," Journal of Informetrics, Elsevier, vol. 16(1).
    8. Xiomara S. Q. Chacon & Thiago C. Silva & Diego R. Amancio, 2020. "Comparing the impact of subfields in scientific journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 625-639, October.
    9. Woon Peng Goh & Kang-Kwong Luke & Siew Ann Cheong, 2018. "Functional shortcuts in language co-occurrence networks," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-18, September.
    10. Quispe, Laura V.C. & Tohalino, Jorge A.V. & Amancio, Diego R., 2021. "Using virtual edges to improve the discriminability of co-occurrence text networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    11. Viana, Matheus P. & Amancio, Diego R. & da F. Costa, Luciano, 2013. "On time-varying collaboration networks," Journal of Informetrics, Elsevier, vol. 7(2), pages 371-378.
    12. Bian, Tian & Hu, Jiantao & Deng, Yong, 2017. "Identifying influential nodes in complex networks based on AHP," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 422-436.
    13. Mayra Z Rodriguez & Cesar H Comin & Dalcimar Casanova & Odemir M Bruno & Diego R Amancio & Luciano da F Costa & Francisco A Rodrigues, 2019. "Clustering algorithms: A comparative approach," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-34, January.
    14. KM. Pooja & Samrat Mondal & Joydeep Chandra, 2021. "Exploiting similarities across multiple dimensions for author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7525-7560, September.
    15. Samuel Zanferdini Oliva & Livia Oliveira-Ciabati & Denise Gazotto Dezembro & Mário Sérgio Adolfi Júnior & Maísa Carvalho Silva & Hugo Cesar Pessotti & Juliana Tarossi Pollettini, 2021. "Text structuring methods based on complex network: a systematic review," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1471-1493, February.
    16. Roger Shepard, 1974. "Representation of structure in similarity data: Problems and prospects," Psychometrika, Springer;The Psychometric Society, vol. 39(4), pages 373-421, December.
    17. Marian-Gabriel Hâncean & Matjaž Perc & Lazăr Vlăsceanu, 2014. "Fragmented Romanian Sociology: Growth and Structure of the Collaboration Network," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-9, November.
    18. Giovanna Boccuzzo & Licia Maron, 2017. "Proposal of a composite indicator of job quality based on a measure of weighted distances," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(5), pages 2357-2374, September.
    19. Jong-Seok Lee & Dan Zhu, 2012. "Shilling Attack Detection---A New Approach for a Trustworthy Recommender System," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 117-131, February.
    20. Ján Kulfan & Lenka Sarvašová & Michal Parák & Marek Dzurenko & Peter Zach, 2018. "Can late flushing trees avoid attack by moth larvae in temperate forests?," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 54(4), pages 272-283.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:495:y:2018:i:c:p:49-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.