IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v6y2012i3p427-434.html
   My bibliography  Save this article

Three-feature model to reproduce the topology of citation networks and the effects from authors’ visibility on their h-index

Author

Listed:
  • Amancio, Diego Raphael
  • Oliveira, Osvaldo Novais
  • da Fontoura Costa, Luciano

Abstract

Various factors are believed to govern the selection of references in citation networks, but a precise, quantitative determination of their importance has remained elusive. In this paper, we show that three factors can account for the referencing pattern of citation networks for two topics, namely “graphenes” and “complex networks”, thus allowing one to reproduce the topological features of the networks built with papers being the nodes and the edges established by citations. The most relevant factor was content similarity, while the other two – in-degree (i.e. citation counts) and age of publication – had varying importance depending on the topic studied. This dependence indicates that additional factors could play a role. Indeed, by intuition one should expect the reputation (or visibility) of authors and/or institutions to affect the referencing pattern, and this is only indirectly considered via the in-degree that should correlate with such reputation. Because information on reputation is not readily available, we simulated its effect on artificial citation networks considering two communities with distinct fitness (visibility) parameters. One community was assumed to have twice the fitness value of the other, which amounts to a double probability for a paper being cited. While the h-index for authors in the community with larger fitness evolved with time with slightly higher values than for the control network (no fitness considered), a drastic effect was noted for the community with smaller fitness.

Suggested Citation

  • Amancio, Diego Raphael & Oliveira, Osvaldo Novais & da Fontoura Costa, Luciano, 2012. "Three-feature model to reproduce the topology of citation networks and the effects from authors’ visibility on their h-index," Journal of Informetrics, Elsevier, vol. 6(3), pages 427-434.
  • Handle: RePEc:eee:infome:v:6:y:2012:i:3:p:427-434
    DOI: 10.1016/j.joi.2012.02.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157712000211
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2012.02.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. R. Amancio & M. G. V. Nunes & O. N. Oliveira & L. F. Costa, 2012. "Using complex networks concepts to assess approaches for citations in scientific papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 827-842, June.
    2. H. Bauke, 2007. "Parameter estimation for power-law distributions by maximum likelihood methods," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 58(2), pages 167-173, July.
    3. Philip Ball, 2005. "Index aims for fair ranking of scientists," Nature, Nature, vol. 436(7053), pages 900-900, August.
    4. Roth, Camille & Wu, Jiang & Lozano, Sergi, 2012. "Assessing impact and quality from local dynamics of citation networks," Journal of Informetrics, Elsevier, vol. 6(1), pages 111-120.
    5. Costas, Rodrigo & Bordons, María, 2007. "The h-index: Advantages, limitations and its relation with other bibliometric indicators at the micro level," Journal of Informetrics, Elsevier, vol. 1(3), pages 193-203.
    6. Alonso, S. & Cabrerizo, F.J. & Herrera-Viedma, E. & Herrera, F., 2009. "h-Index: A review focused in its variants, computation and standardization for different scientific fields," Journal of Informetrics, Elsevier, vol. 3(4), pages 273-289.
    7. Bornmann, Lutz & Schier, Hermann & Marx, Werner & Daniel, Hans-Dieter, 2012. "What factors determine citation counts of publications in chemistry besides their quality?," Journal of Informetrics, Elsevier, vol. 6(1), pages 11-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diego R. Amancio & Osvaldo N. Oliveira jr & Luciano F. Costa, 2015. "Topological-collaborative approach for disambiguating authors’ names in collaborative networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 465-485, January.
    2. Adilson Vital & Diego R. Amancio, 2022. "A comparative analysis of local similarity metrics and machine learning approaches: application to link prediction in author citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(10), pages 6011-6028, October.
    3. Corrêa Jr., Edilson A. & Silva, Filipi N. & da F. Costa, Luciano & Amancio, Diego R., 2017. "Patterns of authors contribution in scientific manuscripts," Journal of Informetrics, Elsevier, vol. 11(2), pages 498-510.
    4. Brito, Ana C.M. & Silva, Filipi N. & Amancio, Diego R., 2021. "Associations between author-level metrics in subsequent time periods," Journal of Informetrics, Elsevier, vol. 15(4).
    5. Jiang, Jingchi & Zheng, Jichuan & Zhao, Chao & Su, Jia & Guan, Yi & Yu, Qiubin, 2016. "Clinical-decision support based on medical literature: A complex network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 42-54.
    6. Jorge A. V. Tohalino & Laura V. C. Quispe & Diego R. Amancio, 2021. "Analyzing the relationship between text features and grants productivity," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4255-4275, May.
    7. Bian, Tian & Hu, Jiantao & Deng, Yong, 2017. "Identifying influential nodes in complex networks based on AHP," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 422-436.
    8. Brito, Ana C.M. & Silva, Filipi N. & de Arruda, Henrique F. & Comin, Cesar H. & Amancio, Diego R. & Costa, Luciano da F., 2021. "Classification of abrupt changes along viewing profiles of scientific articles," Journal of Informetrics, Elsevier, vol. 15(2).
    9. Viana, Matheus P. & Amancio, Diego R. & da F. Costa, Luciano, 2013. "On time-varying collaboration networks," Journal of Informetrics, Elsevier, vol. 7(2), pages 371-378.
    10. Xiomara S. Q. Chacon & Thiago C. Silva & Diego R. Amancio, 2020. "Comparing the impact of subfields in scientific journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 625-639, October.
    11. Mittal, Shravika & Chakraborty, Tanmoy & Pal, Siddharth, 2022. "Dynamics of node influence in network growth models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    12. Mayra Z Rodriguez & Cesar H Comin & Dalcimar Casanova & Odemir M Bruno & Diego R Amancio & Luciano da F Costa & Francisco A Rodrigues, 2019. "Clustering algorithms: A comparative approach," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-34, January.
    13. Zhao, Qihang & Feng, Xiaodong, 2022. "Utilizing citation network structure to predict paper citation counts: A Deep learning approach," Journal of Informetrics, Elsevier, vol. 16(1).
    14. KM. Pooja & Samrat Mondal & Joydeep Chandra, 2021. "Exploiting similarities across multiple dimensions for author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7525-7560, September.
    15. Kumar, Dhananjay & Bhowmick, Plaban Kumar & Paik, Jiaul H, 2023. "Researcher influence prediction (ResIP) using academic genealogy network," Journal of Informetrics, Elsevier, vol. 17(2).
    16. Akimushkin, Camilo & Amancio, Diego R. & Oliveira, Osvaldo N., 2018. "On the role of words in the network structure of texts: Application to authorship attribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 49-58.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baccini, A. & Barabesi, L. & Marcheselli, M. & Pratelli, L., 2012. "Statistical inference on the h-index with an application to top-scientist performance," Journal of Informetrics, Elsevier, vol. 6(4), pages 721-728.
    2. Gaviria-Marin, Magaly & Merigó, José M. & Baier-Fuentes, Hugo, 2019. "Knowledge management: A global examination based on bibliometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 194-220.
    3. Pantea Kamrani & Isabelle Dorsch & Wolfgang G. Stock, 2021. "Do researchers know what the h-index is? And how do they estimate its importance?," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5489-5508, July.
    4. Kong, Ling & Wang, Dongbo, 2020. "Comparison of citations and attention of cover and non-cover papers," Journal of Informetrics, Elsevier, vol. 14(4).
    5. Cabrerizo, F.J. & Alonso, S. & Herrera-Viedma, E. & Herrera, F., 2010. "q2-Index: Quantitative and qualitative evaluation based on the number and impact of papers in the Hirsch core," Journal of Informetrics, Elsevier, vol. 4(1), pages 23-28.
    6. Parul Khurana & Kiran Sharma, 2022. "Impact of h-index on author’s rankings: an improvement to the h-index for lower-ranked authors," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4483-4498, August.
    7. Bornmann, Lutz & Marx, Werner, 2012. "HistCite analysis of papers constituting the h index research front," Journal of Informetrics, Elsevier, vol. 6(2), pages 285-288.
    8. Yu Liu & Wei Zuo & Ying Gao & Yanhong Qiao, 2013. "Comprehensive geometrical interpretation of h-type indices," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(2), pages 605-615, August.
    9. Kuan, Chung-Huei & Huang, Mu-Hsuan & Chen, Dar-Zen, 2011. "Ranking patent assignee performance by h-index and shape descriptors," Journal of Informetrics, Elsevier, vol. 5(2), pages 303-312.
    10. Marta Cardin & Marco Corazza & Stefania Funari & Silvio Giove, 2011. "A fuzzy-based scoring rule for author ranking," Working Papers 2011_11, Department of Economics, University of Venice "Ca' Foscari".
    11. Chen, Meiqian & Guo, Zhaoxia & Dong, Yucheng & Chiclana, Francisco & Herrera-Viedma, Enrique, 2021. "Citations optimal growth path: A tool to analyze sensitivity to citations of h-like indexes," Journal of Informetrics, Elsevier, vol. 15(4).
    12. R. Álvarez & E. Cahué & J. Clemente-Gallardo & A. Ferrer & D. Íñiguez & X. Mellado & A. Rivero & G. Ruiz & F. Sanz & E. Serrano & A. Tarancón & Y. Vergara, 2015. "Analysis of academic productivity based on Complex Networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(3), pages 651-672, September.
    13. Tânia F. G. G. Cova & Alberto A. C. C. Pais & Sebastião J. Formosinho, 2013. "Iberian universities: a characterisation from ESI rankings," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 1239-1251, March.
    14. Kwon, Eunrang & Yun, Jinhyuk & Kang, Jeong-han, 2023. "The effect of the COVID-19 pandemic on gendered research productivity and its correlates," Journal of Informetrics, Elsevier, vol. 17(1).
    15. van Eck, Nees Jan & Waltman, Ludo, 2008. "Generalizing the h- and g-indices," Journal of Informetrics, Elsevier, vol. 2(4), pages 263-271.
    16. Clemente-Gallardo, J. & Ferrer, A. & Íñiguez, D. & Rivero, A. & Ruiz, G. & Tarancón, A., 2019. "Do researchers collaborate in a similar way to publish and to develop projects?," Journal of Informetrics, Elsevier, vol. 13(1), pages 64-77.
    17. Dašić Predrag, 2015. "State and Analysis of Scientific Journals in the Field of “Economic Sciences” for the Period 1995-2014," Economic Themes, Sciendo, vol. 53(4), pages 547-581, December.
    18. Ben Zhang & Xiaohong Wang, 2017. "Empirical study on influence of university-industry collaboration on research performance and moderating effect of social capital: evidence from engineering academics in China," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 257-277, October.
    19. van Eck, N.J.P. & Waltman, L., 2008. "Generalizing the h- and g-indices," ERIM Report Series Research in Management ERS-2008-049-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    20. Anand Bihari & Sudhakar Tripathi & Akshay Deepak, 2021. "Iterative weighted EM and iterative weighted EM′-index for scientific assessment of scholars," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5551-5568, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:6:y:2012:i:3:p:427-434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.