IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v476y2017icp43-48.html
   My bibliography  Save this article

Time-dependent limited penetrable visibility graph analysis of nonstationary time series

Author

Listed:
  • Gao, Zhong-Ke
  • Cai, Qing
  • Yang, Yu-Xuan
  • Dang, Wei-Dong

Abstract

Recent years have witnessed the development of visibility graph theory, which allows us to analyze a time series from the perspective of complex network. We in this paper develop a novel time-dependent limited penetrable visibility graph (TDLPVG). Two examples using nonstationary time series from RR intervals and gas–liquid flows are provided to demonstrate the effectiveness of our approach. The results of the first example suggest that our TDLPVG method allows characterizing the time-varying behaviors and classifying heart states of healthy, congestive heart failure and atrial fibrillation from RR interval time series. For the second example, we infer TDLPVGs from gas–liquid flow signals and interestingly find that the deviation of node degree of TDLPVGs enables to effectively uncover the time-varying dynamical flow behaviors of gas–liquid slug and bubble flow patterns. All these results render our TDLPVG method particularly powerful for characterizing the time-varying features underlying realistic complex systems from time series.

Suggested Citation

  • Gao, Zhong-Ke & Cai, Qing & Yang, Yu-Xuan & Dang, Wei-Dong, 2017. "Time-dependent limited penetrable visibility graph analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 43-48.
  • Handle: RePEc:eee:phsmap:v:476:y:2017:i:c:p:43-48
    DOI: 10.1016/j.physa.2017.02.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117301784
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.02.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Xuan & Shi, Suixiang & Xu, Lingyu & Yu, Jie & Liu, Yaya, 2020. "Analyzing dynamic association of multivariate time series based on method of directed limited penetrable visibility graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    2. Liu, Hao-Ran & Li, Ming-Xia & Zhou, Wei-Xing, 2024. "Visibility graph analysis of the grains and oilseeds indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
    3. Dai, Peng-Fei & Xiong, Xiong & Zhou, Wei-Xing, 2019. "Visibility graph analysis of economy policy uncertainty indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    4. Charakopoulos, A.K. & Katsouli, G.A. & Karakasidis, T.E., 2018. "Dynamics and causalities of atmospheric and oceanic data identified by complex networks and Granger causality analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 436-453.
    5. Wang, Dong & Zhao, Yi, 2019. "Network community detection from the perspective of time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 205-214.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:476:y:2017:i:c:p:43-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.