IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v495y2018icp143-151.html
   My bibliography  Save this article

The pricing of European options on two underlying assets with delays

Author

Listed:
  • Lin, Lisha
  • Li, Yaqiong
  • Wu, Jing

Abstract

In the paper, the pricing of European options on two underlying assets with delays is discussed. By using the approach of equivalent martingale measure transformation, the market is proved to be complete. With exchange option as a particular example, we obtain the explicit pricing formula in a subinterval of option period. The robust Euler–Maruyama method is combined with the Monte Carlo simulation to compute exchange option prices within the whole option period. Numerical experiments indicate that there is an increasing possibility of the difference between the delayed and Black–Scholes option prices with the increase of delay.

Suggested Citation

  • Lin, Lisha & Li, Yaqiong & Wu, Jing, 2018. "The pricing of European options on two underlying assets with delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 143-151.
  • Handle: RePEc:eee:phsmap:v:495:y:2018:i:c:p:143-151
    DOI: 10.1016/j.physa.2017.12.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117312621
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.12.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rehez Ahlip & Marek Rutkowski, 2016. "Pricing of foreign exchange options under the MPT stochastic volatility model and the CIR interest rates," The European Journal of Finance, Taylor & Francis Journals, vol. 22(7), pages 551-571, May.
    2. M. Avellaneda & A. Levy & A. ParAS, 1995. "Pricing and hedging derivative securities in markets with uncertain volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 73-88.
    3. repec:bla:jfinan:v:59:y:2004:i:3:p:1367-1404 is not listed on IDEAS
    4. Sovan Mitra, 2010. "Regime switching stochastic volatility option pricing," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 1(2), pages 213-242.
    5. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    6. Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
    7. Kazmerchuk, Yuriy & Swishchuk, Anatoliy & Wu, Jianhong, 2007. "The pricing of options for securities markets with delayed response," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 75(3), pages 69-79.
    8. Margrabe, William, 1978. "The Value of an Option to Exchange One Asset for Another," Journal of Finance, American Finance Association, vol. 33(1), pages 177-186, March.
    9. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shafi, Khuram & Latif, Natasha & Shad, Shafqat Ali & Idrees, Zahra & Gulzar, Saqib, 2018. "Estimating option greeks under the stochastic volatility using simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1288-1296.
    2. Ghafarian, Bahareh & Hanafizadeh, Payam & Qahi, Amir Hossein Mortazavi, 2018. "Applying Greek letters to robust option price modeling by binomial-tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 632-639.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominique Guegan & Jing Zhang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," PSE-Ecole d'économie de Paris (Postprint) halshs-00368336, HAL.
    2. Dominique Guegan & Jing Zang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 777-795.
    3. Joel Vanden, 2006. "Exact Superreplication Strategies for a Class of Derivative Assets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(1), pages 61-87.
    4. Kung, James J. & Lee, Lung-Sheng, 2009. "Option pricing under the Merton model of the short rate," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(2), pages 378-386.
    5. Chavas, Jean-Paul & Li, Jian & Wang, Linjie, 2024. "Option pricing revisited: The role of price volatility and dynamics," Journal of Commodity Markets, Elsevier, vol. 33(C).
    6. Gondzio, Jacek & Kouwenberg, Roy & Vorst, Ton, 2003. "Hedging options under transaction costs and stochastic volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 1045-1068, April.
    7. Dominique Guegan & Jing Zhang, 2007. "Pricing bivariate option under GARCH-GH model with dynamic copula : application for Chinese market," Post-Print halshs-00188248, HAL.
    8. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    9. Dominique Guegan & Jing Zhang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," Post-Print halshs-00368336, HAL.
    10. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    11. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    12. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    13. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    14. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    15. Anna Pajor, 2009. "A Note on Option Pricing with the Use of Discrete-Time Stochastic Volatility Processes," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 1(1), pages 71-81, March.
    16. F. Fornari & A. Mele, 1998. "ARCH Models and Option Pricing : The Continuous Time Connection," THEMA Working Papers 98-30, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    17. Matthias R. Fengler & Helmut Herwartz & Christian Werner, 2012. "A Dynamic Copula Approach to Recovering the Index Implied Volatility Skew," Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 457-493, June.
    18. Zhu, Ke & Ling, Shiqing, 2015. "Model-based pricing for financial derivatives," Journal of Econometrics, Elsevier, vol. 187(2), pages 447-457.
    19. René Garcia & Richard Luger & Éric Renault, 2005. "Viewpoint: Option prices, preferences, and state variables," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 38(1), pages 1-27, February.
    20. Guidolin, Massimo & Timmermann, Allan, 2003. "Option prices under Bayesian learning: implied volatility dynamics and predictive densities," Journal of Economic Dynamics and Control, Elsevier, vol. 27(5), pages 717-769, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:495:y:2018:i:c:p:143-151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.