IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v290y2021i1p219-234.html
   My bibliography  Save this article

Tensorial graph learning for link prediction in generalized heterogeneous networks

Author

Listed:
  • Chen, Zhen-Yu
  • Fan, Zhi-Ping
  • Sun, Minghe

Abstract

Tensorial graph learning frameworks are proposed for link predictions in heterogeneous, homogeneous and generalized heterogeneous networks. In these frameworks, tensorial graphs are used to represent different networks by incorporating node and edge tensors into the graphs. A tensorial graph kernel method is developed for link predictions in these networks using four types of, i.e., structural, behavioral, content and node/edge characteristics, data. In this method, a n-strand iterated algorithm and a tensorial graph based random walk algorithm are proposed to measure node similarities in different networks within the generalized heterogeneous networks, and a tensorial graph multi-kernel learning method is developed to integrate the results. Experimental results on two real-world social media databases show that the tensorial graph kernel method has better performance using all types of data than using one type of data alone or combinations of some types of data. The tensorial graph kernel method also performs considerably better than existing competitive methods.

Suggested Citation

  • Chen, Zhen-Yu & Fan, Zhi-Ping & Sun, Minghe, 2021. "Tensorial graph learning for link prediction in generalized heterogeneous networks," European Journal of Operational Research, Elsevier, vol. 290(1), pages 219-234.
  • Handle: RePEc:eee:ejores:v:290:y:2021:i:1:p:219-234
    DOI: 10.1016/j.ejor.2020.05.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720305233
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.05.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simon de Blas, Clara & Simon Martin, Jose & Gomez Gonzalez, Daniel, 2018. "Combined social networks and data envelopment analysis for ranking," European Journal of Operational Research, Elsevier, vol. 266(3), pages 990-999.
    2. Gupta, Mukul & Kumar, Pradeep, 2020. "Recommendation generation using personalized weight of meta-paths in heterogeneous information networks," European Journal of Operational Research, Elsevier, vol. 284(2), pages 660-674.
    3. Fan, Zhi-Ping & Sun, Minghe, 2016. "A multi-kernel support tensor machine for classification with multitype multiway data and an application to cross-selling recommendationsAuthor-Name: Chen, Zhen-Yu," European Journal of Operational Research, Elsevier, vol. 255(1), pages 110-120.
    4. Li, Libo, 2018. "Predicting online invitation responses with a competing risk model using privacy-friendly social event data," European Journal of Operational Research, Elsevier, vol. 270(2), pages 698-708.
    5. Zan Huang & Daniel D. Zeng & Hsinchun Chen, 2007. "Analyzing Consumer-Product Graphs: Empirical Findings and Applications in Recommender Systems," Management Science, INFORMS, vol. 53(7), pages 1146-1164, July.
    6. Xiao Fang & Paul Jen-Hwa Hu & Zhepeng (Lionel) Li & Weiyu Tsai, 2013. "Predicting Adoption Probabilities in Social Networks," Information Systems Research, INFORMS, vol. 24(1), pages 128-145, March.
    7. Scholz, Michael & Pfeiffer, Jella & Rothlauf, Franz, 2017. "Using PageRank for non-personalized default rankings in dynamic markets," European Journal of Operational Research, Elsevier, vol. 260(1), pages 388-401.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paolo Bartesaghi & Gian Paolo Clemente & Rosanna Grassi, 2021. "A tensor-based unified approach for clustering coefficients in financial multiplex networks," Papers 2105.14325, arXiv.org, revised Apr 2022.
    2. Paolo Bartesaghi & Gian Paolo Clemente & Rosanna Grassi, 2022. "Clustering coefficients as measures of the complex interactions in a directed weighted multilayer network," Papers 2206.06309, arXiv.org, revised Dec 2022.
    3. Saridakis, Charalampos & Katsikeas, Constantine S. & Angelidou, Sofia & Oikonomidou, Maria & Pratikakis, Polyvios, 2023. "Mining Twitter lists to extract brand-related associative information for celebrity endorsement," European Journal of Operational Research, Elsevier, vol. 311(1), pages 316-332.
    4. Bartesaghi, Paolo & Clemente, Gian Paolo & Grassi, Rosanna, 2023. "Clustering coefficients as measures of the complex interactions in a directed weighted multilayer network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yi-Lu & Guo, Qiang & Ni, Jing & Liu, Jian-Guo, 2015. "Memory effect of the online rating for movies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 261-266.
    2. Irina Heimbach & Oliver Hinz, 2018. "The Impact of Sharing Mechanism Design on Content Sharing in Online Social Networks," Information Systems Research, INFORMS, vol. 29(3), pages 592-611, September.
    3. Tolga Akcura & Kemal Altinkemer & Hailiang Chen, 0. "Noninfluentials and information dissemination in the microblogging community," Information Technology and Management, Springer, vol. 0, pages 1-18.
    4. Gao, Zheming & Fang, Shu-Cherng & Luo, Jian & Medhin, Negash, 2021. "A kernel-free double well potential support vector machine with applications," European Journal of Operational Research, Elsevier, vol. 290(1), pages 248-262.
    5. Tolga Akcura & Kemal Altinkemer & Hailiang Chen, 2018. "Noninfluentials and information dissemination in the microblogging community," Information Technology and Management, Springer, vol. 19(2), pages 89-106, June.
    6. Sheng, Jie, 2019. "Being Active in Online Communications: Firm Responsiveness and Customer Engagement Behaviour," Journal of Interactive Marketing, Elsevier, vol. 46(C), pages 40-51.
    7. Ahmed Abbasi & Jingjing Li & Donald Adjeroh & Marie Abate & Wanhong Zheng, 2019. "Don’t Mention It? Analyzing User-Generated Content Signals for Early Adverse Event Warnings," Information Systems Research, INFORMS, vol. 30(3), pages 1007-1028, September.
    8. Mi Hyun Lee & Sang Pil Han & Sungho Park & Wonseok Oh, 2023. "Positive Demand Spillover of Popular App Adoption: Implications for Platform Owners’ Management of Complements," Information Systems Research, INFORMS, vol. 34(3), pages 961-995, September.
    9. Park, YoungSoo & Sim, Jeongeun & Kim, Bosung, 2022. "Online retail operations with “Try-Before-You-Buy”," European Journal of Operational Research, Elsevier, vol. 299(3), pages 987-1002.
    10. Hongzhe Zhang & Xiaohang Zhao & Xiao Fang & Bintong Chen, 2024. "Proactive Resource Request for Disaster Response: A Deep Learning-Based Optimization Model," Information Systems Research, INFORMS, vol. 35(2), pages 528-550, June.
    11. Camur, Mustafa C. & Sharkey, Thomas C. & Vogiatzis, Chrysafis, 2023. "The stochastic pseudo-star degree centrality problem," European Journal of Operational Research, Elsevier, vol. 308(2), pages 525-539.
    12. Orji, Ifeyinwa Juliet & Kusi-Sarpong, Simonov & Huang, Shuangfa & Vazquez-Brust, Diego, 2020. "Evaluating the factors that influence blockchain adoption in the freight logistics industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    13. Yin, Chun-Xia & Peng, Qin-Ke & Chu, Tao, 2012. "Personal artist recommendation via a listening and trust preference network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 1991-1999.
    14. Gediminas Adomavicius & YoungOk Kwon, 2014. "Optimization-Based Approaches for Maximizing Aggregate Recommendation Diversity," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 351-369, May.
    15. Saridakis, Charalampos & Katsikeas, Constantine S. & Angelidou, Sofia & Oikonomidou, Maria & Pratikakis, Polyvios, 2023. "Mining Twitter lists to extract brand-related associative information for celebrity endorsement," European Journal of Operational Research, Elsevier, vol. 311(1), pages 316-332.
    16. Julian Inchauspe, 2021. "Modelling Facebook and Outlook event attendance decisions: coordination traps and herding," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(4), pages 797-815, October.
    17. Gobbo, Simone Cristina de Oliveira & Mariano, Enzo Barberio & Gobbo Jr., José Alcides, 2021. "Combining social network and data envelopment analysis: A proposal for a Selection Employment Contracts Effectiveness index in healthcare network applications," Omega, Elsevier, vol. 103(C).
    18. Xiaoji Wan & Fen Chen & Hailin Li & Weibin Lin, 2022. "Potentially Related Commodity Discovery Based on Link Prediction," Mathematics, MDPI, vol. 10(19), pages 1-27, October.
    19. Zhu Zhang & Xuan Wei & Xiaolong Zheng & Qiudan Li & Daniel Dajun Zeng, 2022. "Detecting Product Adoption Intentions via Multiview Deep Learning," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 541-556, January.
    20. Liang Hou & Roger J. Jiao, 2020. "Data-informed inverse design by product usage information: a review, framework and outlook," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 529-552, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:290:y:2021:i:1:p:219-234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.