IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v493y2018icp330-341.html
   My bibliography  Save this article

Dynamical implications of sample shape for avalanches in 2-dimensional random-field Ising model with saw-tooth domain wall

Author

Listed:
  • Tadić, Bosiljka

Abstract

We study dynamics of a built-in domain wall (DW) in 2-dimensional disordered ferromagnets with different sample shapes using random-field Ising model on a square lattice rotated by 45 degrees. The saw-tooth DW of the length Lx is created along one side and swept through the sample by slow ramping of the external field until the complete magnetisation reversal and the wall annihilation at the open top boundary at a distance Ly. By fixing the number of spins N=Lx×Ly=106 and the random-field distribution at a value above the critical disorder, we vary the ratio of the DW length to the annihilation distance in the range Lx∕Ly∈[1∕16,16]. The periodic boundary conditions are applied in the y-direction so that these ratios comprise different samples, i.e., surfaces of cylinders with the changing perimeter Lx and height Ly. We analyse the avalanches of the DW slips between following field updates, and the multifractal structure of the magnetisation fluctuation time series. Our main findings are that the domain-wall lengths materialised in different sample shapes have an impact on the dynamics at all scales. Moreover, the domain-wall motion at the beginning of the hysteresis loop (HLB) probes the disorder effects resulting in the fluctuations that are significantly different from the large avalanches in the central part of the loop (HLC), where the strong fields dominate. Specifically, the fluctuations in HLB exhibit a wide multi-fractal spectrum, which shifts towards higher values of the exponents when the DW length is reduced. The distributions of the avalanches in this segments of the loops obey power-law decay and the exponential cutoffs with the exponents firmly in the mean-field universality class for long DW. In contrast, the avalanches in the HLC obey Tsallis density distribution with the power-law tails which indicate the new categories of the scale invariant behaviour for different ratios Lx∕Ly. The large fluctuations in the HLC, on the other hand, have a rather narrow spectrum which is less sensitive to the length of the wall. These findings shed light to the dynamical criticality of the random-field Ising model at its lower critical dimension; they can be relevant to applications of the dynamics of injected domain walls in two-dimensional nanowires and ferromagnetic films.

Suggested Citation

  • Tadić, Bosiljka, 2018. "Dynamical implications of sample shape for avalanches in 2-dimensional random-field Ising model with saw-tooth domain wall," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 330-341.
  • Handle: RePEc:eee:phsmap:v:493:y:2018:i:c:p:330-341
    DOI: 10.1016/j.physa.2017.11.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117310774
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.11.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pavlos, G.P. & Karakatsanis, L.P. & Xenakis, M.N. & Pavlos, E.G. & Iliopoulos, A.C. & Sarafopoulos, D.V., 2014. "Universality of non-extensive Tsallis statistics and time series analysis: Theory and applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 58-95.
    2. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    3. Tadić, Bosiljka, 1999. "Dynamic criticality in driven disordered systems: role of depinning and driving rate in Barkhausen noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 270(1), pages 125-134.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Janićević, Sanja & Mijatović, Svetislav & Spasojević, Djordje, 2023. "Finite driving rate effects in the nonequilibrium athermal random field Ising model of thin systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. İşcanoğlu-Çekiç, Ayşegül & Gülteki̇n, Havva, 2019. "Are cross-correlations between Turkish Stock Exchange and three major country indices multifractal or monofractal?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 978-990.
    2. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    3. L. Telesca & T. Matcharashvili & T. Chelidze & N. Zhukova & Z. Javakhishvili, 2015. "Investigating the dynamical features of the time distribution of the reservoir-induced seismicity in Enguri area (Georgia)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 117-125, May.
    4. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    5. Longfeng Zhao & Wei Li & Andrea Fenu & Boris Podobnik & Yougui Wang & H. Eugene Stanley, 2017. "The q-dependent detrended cross-correlation analysis of stock market," Papers 1705.01406, arXiv.org, revised Jun 2017.
    6. Vitanov, Nikolay K. & Sakai, Kenshi & Dimitrova, Zlatinka I., 2008. "SSA, PCA, TDPSC, ACFA: Useful combination of methods for analysis of short and nonstationary time series," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 187-202.
    7. Ruan, Qingsong & Bao, Junjie & Zhang, Manqian & Fan, Limin, 2019. "The effects of exchange rate regime reform on RMB markets: A new perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 122-134.
    8. Murguía, J.S. & Rosu, H.C. & Jimenez, A. & Gutiérrez-Medina, B. & García-Meza, J.V., 2015. "The Hurst exponents of Nitzschia sp. diatom trajectories observed by light microscopy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 176-184.
    9. Wang, Dong-Hua & Yu, Xiao-Wen & Suo, Yuan-Yuan, 2012. "Statistical properties of the yuan exchange rate index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3503-3512.
    10. Wu, Yue & Shang, Pengjian & Chen, Shijian, 2019. "Modified multifractal large deviation spectrum based on CID for financial market system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1331-1342.
    11. Zhuang, Xiaoyang & Wei, Yu & Ma, Feng, 2015. "Multifractality, efficiency analysis of Chinese stock market and its cross-correlation with WTI crude oil price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 101-113.
    12. Xiao, Di & Wang, Jun, 2021. "Attitude interaction for financial price behaviours by contact system with small-world network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    13. Jovanovic, Tijana & Mejía, Alfonso & Gall, Heather & Gironás, Jorge, 2016. "Effect of urbanization on the long-term persistence of streamflow records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 208-221.
    14. Manimaran, P. & Narayana, A.C., 2018. "Multifractal detrended cross-correlation analysis on air pollutants of University of Hyderabad Campus, India," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 228-235.
    15. El Alaoui, Marwane & Benbachir, Saâd, 2013. "Multifractal detrended cross-correlation analysis in the MENA area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5985-5993.
    16. Ladislav KRISTOUFEK & Petra LUNACKOVA, 2013. "Long-term Memory in Electricity Prices: Czech Market Evidence," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(5), pages 407-424, November.
    17. Linan Sun & Antao Wang & Jiayao Wang, 2022. "Spatial Characteristics Analysis for Coupling Strength among Air Pollutants during a Severe Haze Period in Zhengzhou, China," IJERPH, MDPI, vol. 19(14), pages 1-19, July.
    18. Sandoval, Leonidas, 2014. "To lag or not to lag? How to compare indices of stock markets that operate on different times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 227-243.
    19. Méndez-Gordillo, Alma Rosa & Cadenas, Erasmo, 2021. "Wind speed forecasting by the extraction of the multifractal patterns of time series through the multiplicative cascade technique," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    20. Saâdaoui, Foued, 2024. "Segmented multifractal detrended fluctuation analysis for assessing inefficiency in North African stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:493:y:2018:i:c:p:330-341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.