Supersymmetric quantum mechanics method for the Fokker–Planck equation with applications to protein folding dynamics
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2017.10.021
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Damiano Brigo & Fabio Mercurio, 2002. "Lognormal-Mixture Dynamics And Calibration To Market Volatility Smiles," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 427-446.
- Caldas, Denise & Chahine, Jorge & Filho, Elso Drigo, 2014. "The Fokker–Planck equation for a bistable potential," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 92-100.
- Lee, Kwonmoo & Sung, Wokyung, 2002. "Ion transport and channel transition in biomembranes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 315(1), pages 79-97.
- Borges, G.R.P. & Filho, Elso Drigo & Ricotta, R.M., 2010. "Variational supersymmetric approach to evaluate Fokker–Planck probability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3892-3899.
- Montagnon, Chris, 2015. "A closed solution to the Fokker–Planck equation applied to forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 14-22.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Philipp, Lucas & Shizgal, Bernie D., 2019. "A Pseudospectral solution of a bistable Fokker–Planck equation that models protein folding," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 158-166.
- Drigo Filho, Elso & Chahine, Jorge & Araujo, Marcelo Tozo & Ricotta, Regina Maria, 2022. "Probability distribution to obtain the characteristic passage time for different tri-stable potentials," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Secrest, J.A. & Conroy, J.M. & Miller, H.G., 2020. "A unified view of transport equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
- Philipp, Lucas & Shizgal, Bernie D., 2019. "A Pseudospectral solution of a bistable Fokker–Planck equation that models protein folding," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 158-166.
- Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
- Antoine Jacquier & Patrick Roome, 2015. "Black-Scholes in a CEV random environment," Papers 1503.08082, arXiv.org, revised Nov 2017.
- Damiano Brigo, 2008. "The general mixture-diffusion SDE and its relationship with an uncertain-volatility option model with volatility-asset decorrelation," Papers 0812.4052, arXiv.org.
- Hentati-Kaffel, R. & Prigent, J.-L., 2016.
"Optimal positioning in financial derivatives under mixture distributions,"
Economic Modelling, Elsevier, vol. 52(PA), pages 115-124.
- R. Hentati-Kaffel & J.L. Prigent, 2014. "Optimal Positioning in Financial Derivatives under Mixture Distributions," Working Papers 2014-347, Department of Research, Ipag Business School.
- Rania Hentati & Jean-Luc Prigent, 2016. "Optimal positioning in financial derivatives under mixture distributions," Post-Print hal-01299840, HAL.
- Rania Hentati & Jean-Luc Prigent, 2016. "Optimal positioning in financial derivatives under mixture distributions," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01299840, HAL.
- Christa Cuchiero & Irene Klein & Josef Teichmann, 2017. "A fundamental theorem of asset pricing for continuous time large financial markets in a two filtration setting," Papers 1705.02087, arXiv.org.
- Gianluca Vagnani, 2009. "The Black-Scholes model as a determinant of the implied volatility smile: A simulation study," Post-Print hal-00736952, HAL.
- Detering, Nils & Packham, Natalie, 2018. "Model risk of contingent claims," IRTG 1792 Discussion Papers 2018-036, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Rui, Weiguo & Yang, Xinsong & Chen, Fen, 2022. "Method of variable separation for investigating exact solutions and dynamical properties of the time-fractional Fokker–Planck equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
- Ramírez-Piscina, L. & Sancho, J.M., 2018. "Periodic spiking by a pair of ionic channels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 345-354.
- Grith, Maria & Härdle, Wolfgang Karl & Kneip, Alois & Wagner, Heiko, 2016. "Functional principal component analysis for derivatives of multivariate curves," SFB 649 Discussion Papers 2016-033, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Alessandro Ramponi, 2011. "Mixture Dynamics and Regime Switching Diffusions with Application to Option Pricing," Methodology and Computing in Applied Probability, Springer, vol. 13(2), pages 349-368, June.
- Xin Liu, 2016. "Asset Pricing with Random Volatility," Papers 1610.01450, arXiv.org, revised Sep 2018.
- Iain J. Clark & Saeed Amen, 2017. "Implied Distributions from GBPUSD Risk-Reversals and Implication for Brexit Scenarios," Risks, MDPI, vol. 5(3), pages 1-17, July.
- Murphy, David & Vasios, Michalis & Vause, Nick, 2014. "Financial Stability Paper No 29: An investigation into the procyclicality of risk-based initial margin models," Bank of England Financial Stability Papers 29, Bank of England.
- Donald Aingworth & Sanjiv Das & Rajeev Motwani, 2006. "A simple approach for pricing equity options with Markov switching state variables," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 95-105.
- Giorno, Virginia & Nobile, Amelia G., 2023. "On a time-inhomogeneous diffusion process with discontinuous drift," Applied Mathematics and Computation, Elsevier, vol. 451(C).
- Tao L. Wu & Shengqiang Xu, 2014. "A Random Field LIBOR Market Model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(6), pages 580-606, June.
- Bhat, Harish S. & Kumar, Nitesh, 2012. "Option pricing under a normal mixture distribution derived from the Markov tree model," European Journal of Operational Research, Elsevier, vol. 223(3), pages 762-774.
More about this item
Keywords
Quantum mechanics; Schrödinger equation; Folding rates; Structure-based model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:493:y:2018:i:c:p:286-300. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.