IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v38y2016icp148-162.html
   My bibliography  Save this article

Dupire’s formulas in the Piterbarg option pricing model

Author

Listed:
  • Labuschagne, Coenraad C.A.
  • von Boetticher, Sven T.

Abstract

In this paper we derive an expression for the local volatility of an underlying asset, given the prices of liquid European call options under the Piterbarg framework. The Piterbarg framework is a multi-curve derivative pricing model which extends the well known Black–Scholes–Merton model by relaxing the assumption of a risk-free interest rate, and includes collateral payments. The expressions for the local volatility is a function of the option price surface, and is then transformed to become a function of the implied volatility surface.

Suggested Citation

  • Labuschagne, Coenraad C.A. & von Boetticher, Sven T., 2016. "Dupire’s formulas in the Piterbarg option pricing model," The North American Journal of Economics and Finance, Elsevier, vol. 38(C), pages 148-162.
  • Handle: RePEc:eee:ecofin:v:38:y:2016:i:c:p:148-162
    DOI: 10.1016/j.najef.2016.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940816300924
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2016.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Damiano Brigo & Fabio Mercurio, 2002. "Lognormal-Mixture Dynamics And Calibration To Market Volatility Smiles," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 427-446.
    2. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Ren-Raw & Leistikow, Dean & Wang, Andrew, 2020. "Futures minimum variance hedge ratio determination: An ex-ante analysis," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    2. Antoine Jacquier & Patrick Roome, 2015. "Black-Scholes in a CEV random environment," Papers 1503.08082, arXiv.org, revised Nov 2017.
    3. Damiano Brigo, 2008. "The general mixture-diffusion SDE and its relationship with an uncertain-volatility option model with volatility-asset decorrelation," Papers 0812.4052, arXiv.org.
    4. Gianluca Vagnani, 2009. "The Black-Scholes model as a determinant of the implied volatility smile: A simulation study," Post-Print hal-00736952, HAL.
    5. Donald Aingworth & Sanjiv Das & Rajeev Motwani, 2006. "A simple approach for pricing equity options with Markov switching state variables," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 95-105.
    6. Harish S. Bhat & Nitesh Kumar, 2015. "Large-Scale Empirical Tests of the Markov Tree Model," IJFS, MDPI, vol. 3(3), pages 1-39, July.
    7. J. A. Jiménez & V. Arunachalam & G. M. Serna, 2015. "Option Pricing Based On A Log–Skew–Normal Mixture," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(08), pages 1-22, December.
    8. Ruijun Bu & Fredj Jawadi & Yuyi Li, 2020. "A multifactor transformed diffusion model with applications to VIX and VIX futures," Econometric Reviews, Taylor & Francis Journals, vol. 39(1), pages 27-53, January.
    9. Abir Sridi & Paul Bilokon, 2023. "Applying Deep Learning to Calibrate Stochastic Volatility Models," Papers 2309.07843, arXiv.org, revised Sep 2023.
    10. Roman V. Ivanov, 2023. "On the Stochastic Volatility in the Generalized Black-Scholes-Merton Model," Risks, MDPI, vol. 11(6), pages 1-23, June.
    11. Wilkens, Sascha & Roder, Klaus, 2006. "The informational content of option-implied distributions: Evidence from the Eurex index and interest rate futures options market," Global Finance Journal, Elsevier, vol. 17(1), pages 50-74, September.
    12. Vagnani, Gianluca, 2009. "The Black-Scholes model as a determinant of the implied volatility smile: A simulation study," Journal of Economic Behavior & Organization, Elsevier, vol. 72(1), pages 103-118, October.
    13. Dietmar Leisen, 2004. "Mixed Lognormal Distributions for Derivatives Pricing and Risk-Management," Computing in Economics and Finance 2004 48, Society for Computational Economics.
    14. Carol Alexander & Leonardo M. Nogueira, 2006. "Hedging Options with Scale-Invariant Models," ICMA Centre Discussion Papers in Finance icma-dp2006-03, Henley Business School, University of Reading.
    15. Maria Kyriacou & Jose Olmo & Marius Strittmatter, 2021. "Optimal portfolio allocation using option‐implied information," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(2), pages 266-285, February.
    16. Damiano Brigo & Camilla Pisani & Francesco Rapisarda, 2021. "The multivariate mixture dynamics model: shifted dynamics and correlation skew," Annals of Operations Research, Springer, vol. 299(1), pages 1411-1435, April.
    17. Carol Alexander & Leonardo Nogueira, 2004. "Stochastic Local Volatility," ICMA Centre Discussion Papers in Finance icma-dp2008-02, Henley Business School, University of Reading, revised Mar 2008.
    18. Carol Alexander & Leonardo M. Nogueira, 2004. "Hedging with Stochastic and Local Volatility," ICMA Centre Discussion Papers in Finance icma-dp2004-10, Henley Business School, University of Reading, revised Dec 2004.
    19. Alexander, Carol, 2004. "Normal mixture diffusion with uncertain volatility: Modelling short- and long-term smile effects," Journal of Banking & Finance, Elsevier, vol. 28(12), pages 2957-2980, December.
    20. Alexander, Carol & Nogueira, Leonardo M., 2007. "Model-free hedge ratios and scale-invariant models," Journal of Banking & Finance, Elsevier, vol. 31(6), pages 1839-1861, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:38:y:2016:i:c:p:148-162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.