IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v389y2010i18p3892-3899.html
   My bibliography  Save this article

Variational supersymmetric approach to evaluate Fokker–Planck probability

Author

Listed:
  • Borges, G.R.P.
  • Filho, Elso Drigo
  • Ricotta, R.M.

Abstract

In this work we introduce a method to determine the time dependent probability density for the one-dimensional Fokker–Planck equation. The treatment is based in an analysis of the Schrödinger equation through the variational method associated to the formalism of supersymmetric quantum mechanics (SQM). The approach uses an ansatz for the superpotential which allows us to obtain the trial functions of the variational method. The hierarchy of effective Hamiltonians permits us to determine the variational eigenfunctions and energies of the excited states to the evaluation of the probability. The symmetric bistable potential is used to illustrate the approach whose results are compared with results obtained by the state-dependent diagonalization method and by direct numerical calculation.

Suggested Citation

  • Borges, G.R.P. & Filho, Elso Drigo & Ricotta, R.M., 2010. "Variational supersymmetric approach to evaluate Fokker–Planck probability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3892-3899.
  • Handle: RePEc:eee:phsmap:v:389:y:2010:i:18:p:3892-3899
    DOI: 10.1016/j.physa.2010.05.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437110004577
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2010.05.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philipp, Lucas & Shizgal, Bernie D., 2019. "A Pseudospectral solution of a bistable Fokker–Planck equation that models protein folding," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 158-166.
    2. Heidari, Hossein & Karamati, Mahdi Rezaei & Motavalli, Hossein, 2022. "Tumor growth modeling via Fokker–Planck equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    3. Polotto, Franciele & Drigo Filho, Elso & Chahine, Jorge & Oliveira, Ronaldo Junio de, 2018. "Supersymmetric quantum mechanics method for the Fokker–Planck equation with applications to protein folding dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 286-300.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:389:y:2010:i:18:p:3892-3899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.