IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v606y2022ics037843712200694x.html
   My bibliography  Save this article

Probability distribution to obtain the characteristic passage time for different tri-stable potentials

Author

Listed:
  • Drigo Filho, Elso
  • Chahine, Jorge
  • Araujo, Marcelo Tozo
  • Ricotta, Regina Maria

Abstract

The purpose of this work is to explore the kinetics of the transition probability distribution obtained as a solution to the Fokker–Planck equation (FPE) for a system described by a potential function (free energy) that has three regions of minimum, a tri-stable potential. The Fokker–Planck equation is rewritten as a Schrödinger equation (SE) and this allows the use of the Supersymmetric Quantum Mechanics formalism (SQM) associated to the variational method to obtain the analytical approximated spectrum. From the solutions obtained the probability distribution is evaluated which allows the determination of the characteristic passage time between the three potential minima. The results show the dependence between the diffusion process and the relative depth between of the central and the lateral minima of the potential.

Suggested Citation

  • Drigo Filho, Elso & Chahine, Jorge & Araujo, Marcelo Tozo & Ricotta, Regina Maria, 2022. "Probability distribution to obtain the characteristic passage time for different tri-stable potentials," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
  • Handle: RePEc:eee:phsmap:v:606:y:2022:i:c:s037843712200694x
    DOI: 10.1016/j.physa.2022.128121
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712200694X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Caldas, Denise & Chahine, Jorge & Filho, Elso Drigo, 2014. "The Fokker–Planck equation for a bistable potential," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 92-100.
    2. Polotto, Franciele & Drigo Filho, Elso & Chahine, Jorge & Oliveira, Ronaldo Junio de, 2018. "Supersymmetric quantum mechanics method for the Fokker–Planck equation with applications to protein folding dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 286-300.
    3. Arango-Restrepo, A. & Rubi, J.M. & Barragán, D., 2018. "Kinetics and energetics of chemical reactions through intermediate states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 86-96.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philipp, Lucas & Shizgal, Bernie D., 2019. "A Pseudospectral solution of a bistable Fokker–Planck equation that models protein folding," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 158-166.
    2. Secrest, J.A. & Conroy, J.M. & Miller, H.G., 2020. "A unified view of transport equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    3. Rui, Weiguo & Yang, Xinsong & Chen, Fen, 2022. "Method of variable separation for investigating exact solutions and dynamical properties of the time-fractional Fokker–Planck equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    4. Giorno, Virginia & Nobile, Amelia G., 2023. "On a time-inhomogeneous diffusion process with discontinuous drift," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    5. Polotto, Franciele & Drigo Filho, Elso & Chahine, Jorge & Oliveira, Ronaldo Junio de, 2018. "Supersymmetric quantum mechanics method for the Fokker–Planck equation with applications to protein folding dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 286-300.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:606:y:2022:i:c:s037843712200694x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.