IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v182y2024ics0960077924004181.html
   My bibliography  Save this article

Analysis of complex time series based on EEMD energy entropy plane

Author

Listed:
  • Wang, Shujia
  • Yang, Zhuojin
  • Zheng, Xin
  • Ma, Zhuang

Abstract

Ensemble empirical mode decomposition (EEMD) is an adaptive signal processing method that can be effectively applied to nonlinear and non-stationary complex systems. Due to this good attribute, this paper proposes the EEMD energy entropy plane, which combines the EEMD energy entropy and the complexity-entropy causality plane to measure the essential characteristics of the time series. First, we apply the EEMD energy entropy plane to the Logistics map, Hénon map and Lozi map. We find that the EEMD energy entropy can accurately capture the periodic state and chaotic state of the system and carry them out classification. Then we apply the EEMD energy entropy plane to the stock market. The results show that this method can distinguish the stock market in different geographical areas such as economic policy, legal environment, cultural and social environment, industrial structure, etc., and classify them correctly. In the validity test, EEMD energy entropy shows robustness as the signal-to-noise ratio increases and the sequence length changes.

Suggested Citation

  • Wang, Shujia & Yang, Zhuojin & Zheng, Xin & Ma, Zhuang, 2024. "Analysis of complex time series based on EEMD energy entropy plane," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924004181
    DOI: 10.1016/j.chaos.2024.114866
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924004181
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114866?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abu Arqub, Omar & Al-Smadi, Mohammed, 2018. "Atangana–Baleanu fractional approach to the solutions of Bagley–Torvik and Painlevé equations in Hilbert space," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 161-167.
    2. Nagao, Koki & Yanagisawa, Daichi & Nishinari, Katsuhiro, 2018. "Estimation of crowd density applying wavelet transform and machine learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 145-163.
    3. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
    4. Zhu, Bangzhu & Yuan, Lili & Ye, Shunxin, 2019. "Examining the multi-timescales of European carbon market with grey relational analysis and empirical mode decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 392-399.
    5. Stanley, H.E. & Amaral, L.A.N. & Goldberger, A.L. & Havlin, S. & Ivanov, P.Ch. & Peng, C.-K., 1999. "Statistical physics and physiology: Monofractal and multifractal approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 270(1), pages 309-324.
    6. Guhathakurta, Kousik & Mukherjee, Indranil & Chowdhury, A. Roy, 2008. "Empirical mode decomposition analysis of two different financial time series and their comparison," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1214-1227.
    7. Wang, Jing & Shang, Pengjian & Xia, Jianan & Shi, Wenbin, 2015. "EMD based refined composite multiscale entropy analysis of complex signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 583-593.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chatterjee, Soumya & Mukherjee, Indranil & Barat, P., 2018. "Analysis of the behaviour of the detrended BSE sensex data," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 186-196.
    2. Bariviera, Aurelio F. & Font-Ferrer, Alejandro & Sorrosal-Forradellas, M. Teresa & Rosso, Osvaldo A., 2019. "An information theory perspective on the informational efficiency of gold price," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    3. López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    4. El-Dessoky Ahmed, M.M. & Altaf Khan, Muhammad, 2020. "Modeling and analysis of the polluted lakes system with various fractional approaches," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    5. Currenti, Gilda & Negro, Ciro Del & Lapenna, Vincenzo & Telesca, Luciano, 2005. "Fluctuation analysis of the hourly time variability of volcano-magnetic signals recorded at Mt. Etna Volcano, Sicily (Italy)," Chaos, Solitons & Fractals, Elsevier, vol. 23(5), pages 1921-1929.
    6. Nagarajan, Radhakrishnan & Kavasseri, Rajesh G., 2005. "Minimizing the effect of periodic and quasi-periodic trends in detrended fluctuation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 777-784.
    7. Stosic, Tatijana & Telesca, Luciano & Stosic, Borko, 2021. "Multiparametric statistical and dynamical analysis of angular high-frequency wind speed time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    8. Wang, Guochao & Zheng, Shenzhou & Wang, Jun, 2019. "Complex and composite entropy fluctuation behaviors of statistical physics interacting financial model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 97-113.
    9. Fernandes, Leonardo H.S. & de Araujo, Fernando H.A. & Tabak, Benjamin M., 2021. "Insights from the (in)efficiency of Chinese sectoral indices during COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    10. Guan, Sihai & Wan, Dongyu & Yang, Yanmiao & Biswal, Bharat, 2022. "Sources of multifractality of the brain rs-fMRI signal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    11. Nagarajan, Radhakrishnan & Kavasseri, Rajesh G., 2005. "Minimizing the effect of trends on detrended fluctuation analysis of long-range correlated noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 182-198.
    12. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 32-40.
    13. Lovallo, Michele & Lapenna, Vincenzo & Telesca, Luciano, 2005. "Transition matrix analysis of earthquake magnitude sequences," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 33-43.
    14. Zhu, Bangzhu & Wan, Chunzhuo & Wang, Ping, 2022. "Interval forecasting of carbon price: A novel multiscale ensemble forecasting approach," Energy Economics, Elsevier, vol. 115(C).
    15. Kostanjcar, Zvonko & Jeren, Branko & Juretic, Zeljan, 2012. "Impact of uncertainty in expected return estimation on stock price volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5563-5571.
    16. Shao, Liuguo & Zhang, Hua, 2020. "The impact of oil price on the clean energy metal prices: A multi-scale perspective," Resources Policy, Elsevier, vol. 68(C).
    17. Haghani, Milad & Sarvi, Majid & Shahhoseini, Zahra, 2019. "When ‘push’ does not come to ‘shove’: Revisiting ‘faster is slower’ in collective egress of human crowds," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 51-69.
    18. Lin, Aijing & Shang, Pengjian & Zhong, Bo, 2014. "Hidden cross-correlation patterns in stock markets based on permutation cross-sample entropy and PCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 259-272.
    19. Kristoufek, Ladislav & Vosvrda, Miloslav, 2016. "Gold, currencies and market efficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 27-34.
    20. Kristoufek, Ladislav & Vosvrda, Miloslav, 2014. "Commodity futures and market efficiency," Energy Economics, Elsevier, vol. 42(C), pages 50-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924004181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.