IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v450y2016icp454-461.html
   My bibliography  Save this article

Refined scale-dependent permutation entropy to analyze systems complexity

Author

Listed:
  • Wu, Shuen-De
  • Wu, Chiu-Wen
  • Humeau-Heurtier, Anne

Abstract

Multiscale entropy (MSE) has become a prevailing method to quantify the complexity of systems. Unfortunately, MSE has a temporal complexity in O(N2), which is unrealistic for long time series. Moreover, MSE relies on the sample entropy computation which is length-dependent and which leads to large variance and possible undefined entropy values for short time series. Here, we propose and introduce a new multiscale complexity measure, the refined scale-dependent permutation entropy (RSDPE). Through the processing of different kinds of synthetic data and real signals, we show that RSDPE has a behavior close to the one of MSE. Furthermore, RSDPE has a temporal complexity in O(N). Finally, RSDPE has the advantage of being much less length-dependent than MSE. From all this, we conclude that RSDPE over-performs MSE in terms of computational cost and computational accuracy.

Suggested Citation

  • Wu, Shuen-De & Wu, Chiu-Wen & Humeau-Heurtier, Anne, 2016. "Refined scale-dependent permutation entropy to analyze systems complexity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 454-461.
  • Handle: RePEc:eee:phsmap:v:450:y:2016:i:c:p:454-461
    DOI: 10.1016/j.physa.2016.01.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116000832
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.01.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Costa, M. & Peng, C.-K. & L. Goldberger, Ary & Hausdorff, Jeffrey M., 2003. "Multiscale entropy analysis of human gait dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 330(1), pages 53-60.
    2. Wu, Shuen-De & Wu, Chiu-Wen & Lee, Kung-Yen & Lin, Shiou-Gwo, 2013. "Modified multiscale entropy for short-term time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5865-5873.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deka, Bhabesh & Deka, Dipen, 2022. "An improved multiscale distribution entropy for analyzing complexity of real-world signals," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    2. Jingming Su & Xuguang Han & Yan Hong, 2023. "Short Term Power Load Forecasting Based on PSVMD-CGA Model," Sustainability, MDPI, vol. 15(4), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alves Xavier, Sílvio Fernando & Xavier, Érika Fialho Morais & Jale, Jader Silva & Stosic, Tatijana & Santos, Carlos Antonio Costa dos, 2021. "Multiscale entropy analysis of monthly rainfall time series in Paraíba, Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    2. Liu, Yunxiao & Lin, Youfang & Wang, Jing & Shang, Pengjian, 2018. "Refined generalized multiscale entropy analysis for physiological signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 975-985.
    3. Natiq, Hayder & Banerjee, Santo & He, Shaobo & Said, M.R.M. & Kilicman, Adem, 2018. "Designing an M-dimensional nonlinear model for producing hyperchaos," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 506-515.
    4. Deka, Bhabesh & Deka, Dipen, 2022. "An improved multiscale distribution entropy for analyzing complexity of real-world signals," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    5. Litak, Grzegorz & Abadal, Gabriel & Rysak, Andrzej & Przywara, Hubert, 2017. "Complex dynamics of a bistable electrically charged microcantilever: Transition from single well to cross well oscillations," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 85-90.
    6. Zeng, Yayun & Wang, Jun & Xu, Kaixuan, 2017. "Complexity and multifractal behaviors of multiscale-continuum percolation financial system for Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 364-376.
    7. Niu, Hongli & Wang, Jun, 2017. "Return volatility duration analysis of NYMEX energy futures and spot," Energy, Elsevier, vol. 140(P1), pages 837-849.
    8. Pan, Junshan & Hu, Hanping & Liu, Ying, 2014. "Human behavior during Flash Crowd in web surfing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 212-219.
    9. Albarracín E., Eva Susana & Gamboa, Juan C. Rodríguez & Marques, Elaine C.M. & Stosic, Tatijana, 2019. "Complexity analysis of Brazilian agriculture and energy market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 933-941.
    10. Ma, Xiaofei & Huang, Xiaolin & Shen, Yuxiaotong & Qin, Zike & Ge, Yun & Chen, Ying & Ning, Xinbao, 2017. "EEG based topography analysis in string recognition task," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 531-539.
    11. Zhou, Qin & Shang, Pengjian, 2020. "Weighted multiscale cumulative residual Rényi permutation entropy of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    12. Yin, Yi & Shang, Pengjian & Feng, Guochen, 2016. "Modified multiscale cross-sample entropy for complex time series," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 98-110.
    13. Zhang, Ningning & Lin, Aijing & Ma, Hui & Shang, Pengjian & Yang, Pengbo, 2018. "Weighted multivariate composite multiscale sample entropy analysis for the complexity of nonlinear times series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 595-607.
    14. Zhang, Bo & Wang, Jun & Fang, Wen, 2015. "Volatility behavior of visibility graph EMD financial time series from Ising interacting system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 301-314.
    15. Yin, Yi & Wang, Xi & Li, Qiang & Shang, Pengjian, 2020. "Generalized multivariate multiscale sample entropy for detecting the complexity in complex systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    16. Azami, Hamed & Escudero, Javier, 2017. "Refined composite multivariate generalized multiscale fuzzy entropy: A tool for complexity analysis of multichannel signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 261-276.
    17. Wu, Shuen-De & Wu, Chiu-Wen & Lee, Kung-Yen & Lin, Shiou-Gwo, 2013. "Modified multiscale entropy for short-term time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5865-5873.
    18. Jonathan B Dingwell & Joby John & Joseph P Cusumano, 2010. "Do Humans Optimally Exploit Redundancy to Control Step Variability in Walking?," PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-15, July.
    19. Xie, Gang & Qian, Yatong & Wang, Shouyang, 2020. "A decomposition-ensemble approach for tourism forecasting," Annals of Tourism Research, Elsevier, vol. 81(C).
    20. Wang, Jing & Shang, Pengjian & Xia, Jianan & Shi, Wenbin, 2015. "EMD based refined composite multiscale entropy analysis of complex signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 583-593.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:450:y:2016:i:c:p:454-461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.