IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v252y2015icp229-239.html
   My bibliography  Save this article

A hybrid finite difference scheme for pricing Asian options

Author

Listed:
  • Cen, Zhongdi
  • Xu, Aimin
  • Le, Anbo

Abstract

In this paper we apply a hybrid finite difference scheme to evaluate the prices of Asian call options with fixed strike price. We use the Crank–Nicolson method to discretize the time variable and a hybrid finite difference scheme to discretize the spatial variable. The hybrid difference scheme uses the central difference approximation whenever the mesh points are sufficiently away from the left-hand side of the domain to ensure the stability of the scheme; otherwise a midpoint upwind difference scheme is used. The matrix associated with the discrete operator is an M-matrix, which ensures that the spatial discretization scheme is maximum-norm stable. It is proved that the scheme is second-order convergent with respect to both time and spatial variables. Numerical experiments support these theoretical results.

Suggested Citation

  • Cen, Zhongdi & Xu, Aimin & Le, Anbo, 2015. "A hybrid finite difference scheme for pricing Asian options," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 229-239.
  • Handle: RePEc:eee:apmaco:v:252:y:2015:i:c:p:229-239
    DOI: 10.1016/j.amc.2014.12.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300314016610
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2014.12.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hélyette Geman & Marc Yor, 1993. "Bessel Processes, Asian Options, And Perpetuities," Mathematical Finance, Wiley Blackwell, vol. 3(4), pages 349-375, October.
    2. Jérôme Barraquand & Thierry Pudet, 1996. "Pricing Of American Path‐Dependent Contingent Claims," Mathematical Finance, Wiley Blackwell, vol. 6(1), pages 17-51, January.
    3. Boyle, Phelim & Potapchik, Alexander, 2008. "Prices and sensitivities of Asian options: A survey," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 189-211, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Wei-Guo & Li, Zhe & Liu, Yong-Jun, 2018. "Analytical pricing of geometric Asian power options on an underlying driven by a mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 402-418.
    2. Susana Alvarez Diez & Samuel Baixauli & Luis Eduardo Girón, 2019. "Valoración de Opciones Call Asiáticas Promedio Aritmético bajo Movimiento Browniano Logístico," Working Papers 46, Faculty of Economics and Management, Pontificia Universidad Javeriana Cali.
    3. Susana Alvarez Diez & Samuel Baixauli & Luis Eduardo Girón, 2019. "Valoración de opciones call asiáticas Promedio Aritmético usando Taylor Estocástico 1.5," Working Papers 44, Faculty of Economics and Management, Pontificia Universidad Javeriana Cali.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ewald, Christian-Oliver & Menkens, Olaf & Hung Marten Ting, Sai, 2013. "Asian and Australian options: A common perspective," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 1001-1018.
    2. Chueh-Yung Tsao & Chao-Ching Liu, 2012. "Asian Options with Credit Risks: Pricing and Sensitivity Analysis," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 48(S3), pages 96-115, September.
    3. Dan Pirjol & Lingjiong Zhu, 2023. "Sensitivities of Asian options in the Black-Scholes model," Papers 2301.06460, arXiv.org.
    4. Wensheng Yang & Jingtang Ma & Zhenyu Cui, 2021. "Analysis of Markov chain approximation for Asian options and occupation-time derivatives: Greeks and convergence rates," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 359-412, April.
    5. Benhamou, Eric & Duguet, Alexandre, 2003. "Small dimension PDE for discrete Asian options," Journal of Economic Dynamics and Control, Elsevier, vol. 27(11), pages 2095-2114.
    6. Zhaojun Yang & Christian-Oliver Ewald & Olaf Menkens, 2011. "Pricing and hedging of Asian options: quasi-explicit solutions via Malliavin calculus," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(1), pages 93-120, August.
    7. Rongwen Wu & Michael C. Fu, 2003. "Optimal Exercise Policies and Simulation-Based Valuation for American-Asian Options," Operations Research, INFORMS, vol. 51(1), pages 52-66, February.
    8. Hatem Ben-Ameur & Michèle Breton & Pierre L'Ecuyer, 2002. "A Dynamic Programming Procedure for Pricing American-Style Asian Options," Management Science, INFORMS, vol. 48(5), pages 625-643, May.
    9. Dan Pirjol & Jing Wang & Lingjiong Zhu, 2017. "Short Maturity Forward Start Asian Options in Local Volatility Models," Papers 1710.03160, arXiv.org.
    10. Dan Pirjol & Lingjiong Zhu, 2018. "Sensitivities Of Asian Options In The Black–Scholes Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 1-25, February.
    11. Brignone, Riccardo & Kyriakou, Ioannis & Fusai, Gianluca, 2021. "Moment-matching approximations for stochastic sums in non-Gaussian Ornstein–Uhlenbeck models," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 232-247.
    12. Kailin Ding & Zhenyu Cui & Xiaoguang Yang, 2023. "Pricing arithmetic Asian and Amerasian options: A diffusion operator integral expansion approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(2), pages 217-241, February.
    13. Jianqiang Sun & Langnan Chen & Shiyin Li, 2013. "A Quasi‐Analytical Pricing Model for Arithmetic Asian Options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(12), pages 1143-1166, December.
    14. Dai, Min & Li, Peifan & Zhang, Jin E., 2010. "A lattice algorithm for pricing moving average barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 542-554, March.
    15. Yulian Fan & Huadong Zhang, 2017. "The pricing of average options with jump diffusion processes in the uncertain volatility model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-31, March.
    16. Massimo Costabile & Ivar Massabó & Emilio Russo, 2006. "An adjusted binomial model for pricing Asian options," Review of Quantitative Finance and Accounting, Springer, vol. 27(3), pages 285-296, November.
    17. Lu, King-Jeng & Liang, Chiung-Ju & Hsieh, Ming-Hua & Lee, Yi-Hsi, 2020. "An effective hybrid variance reduction method for pricing the Asian options and its variants," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    18. George Chacko & Sanjiv Ranjan Das, 1997. "Average Interest," NBER Working Papers 6045, National Bureau of Economic Research, Inc.
    19. Naoki Kishimoto, 2004. "Pricing Path-Dependent Securities by the Extended Tree Method," Management Science, INFORMS, vol. 50(9), pages 1235-1248, September.
    20. Jaehyun Kim & Hyungbin Park & Jonghwa Park, 2019. "Pricing and hedging short-maturity Asian options in local volatility models," Papers 1911.12944, arXiv.org, revised Apr 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:252:y:2015:i:c:p:229-239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.