IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v19y2016icp90-97.html
   My bibliography  Save this article

Pricing power exchange options with correlated jump risk

Author

Listed:
  • Wang, Xingchun

Abstract

This paper extends the framework of Blenman and Clark (2005) to value power exchange options by incorporating correlated jump risk. A typical class of jump-diffusion processes are used to describe the values of two risky assets, and a common jump process is introduced to allow for correlated jump risk. In this framework, I obtain an explicit pricing formula for power exchange options, and illustrate the effects of common jump risk as well as the difference between the impacts of idiosyncratic and common jump risk.

Suggested Citation

  • Wang, Xingchun, 2016. "Pricing power exchange options with correlated jump risk," Finance Research Letters, Elsevier, vol. 19(C), pages 90-97.
  • Handle: RePEc:eee:finlet:v:19:y:2016:i:c:p:90-97
    DOI: 10.1016/j.frl.2016.06.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612316301106
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2016.06.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    3. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    4. Ning Cai & S. G. Kou, 2011. "Option Pricing Under a Mixed-Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 57(11), pages 2067-2081, November.
    5. Armstrong, Christopher S. & Vashishtha, Rahul, 2012. "Executive stock options, differential risk-taking incentives, and firm value," Journal of Financial Economics, Elsevier, vol. 104(1), pages 70-88.
    6. Johnson, Shane A. & Tian, Yisong S., 2000. "Indexed executive stock options," Journal of Financial Economics, Elsevier, vol. 57(1), pages 35-64, July.
    7. Blenman, Lloyd P. & Clark, Steven P., 2005. "Power exchange options," Finance Research Letters, Elsevier, vol. 2(2), pages 97-106, June.
    8. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    9. Gurdip Bakshi & Nikunj Kapadia & Dilip Madan, 2003. "Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options," The Review of Financial Studies, Society for Financial Studies, vol. 16(1), pages 101-143.
    10. Margrabe, William, 1978. "The Value of an Option to Exchange One Asset for Another," Journal of Finance, American Finance Association, vol. 33(1), pages 177-186, March.
    11. Fischer, Stanley, 1978. "Call Option Pricing when the Exercise Price Is Uncertain, and the Valuation of Index Bonds," Journal of Finance, American Finance Association, vol. 33(1), pages 169-176, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Wei-Guo & Li, Zhe & Liu, Yong-Jun, 2018. "Analytical pricing of geometric Asian power options on an underlying driven by a mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 402-418.
    2. Liang Wang & Weixuan Xia, 2022. "Power‐type derivatives for rough volatility with jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(7), pages 1369-1406, July.
    3. Lloyd P. Blenman & Alberto Bueno-Guerrero & Steven P. Clark, 2022. "Pricing and Hedging Bond Power Exchange Options in a Stochastic String Term-Structure Model," Risks, MDPI, vol. 10(10), pages 1-17, September.
    4. Wang, Xingchun, 2020. "Pricing options on the maximum or minimum of multi-assets under jump-diffusion processes," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 16-26.
    5. Geonwoo Kim, 2020. "Valuation of Exchange Option with Credit Risk in a Hybrid Model," Mathematics, MDPI, vol. 8(11), pages 1-11, November.
    6. He, Chi-Wei & Chang, Kuang-Liang & Wang, Yung-Jang, 2020. "Does the jump risk in the US market matter for Japan and Hong Kong? An investigation on the REIT market," Finance Research Letters, Elsevier, vol. 34(C).
    7. Xin‐Jiang He & Sha Lin, 2023. "Analytically pricing exchange options with stochastic liquidity and regime switching," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(5), pages 662-676, May.
    8. Xu, Guangli & Shao, Xinjian & Wang, Xingchun, 2019. "Analytical valuation of power exchange options with default risk," Finance Research Letters, Elsevier, vol. 28(C), pages 265-274.
    9. Wang, Xingchun, 2016. "Pricing vulnerable options with stochastic default barriers," Finance Research Letters, Elsevier, vol. 19(C), pages 305-313.
    10. Afhami, Bahareh & Rezapour, Mohsen & Madadi, Mohsen & Maroufy, Vahed, 2023. "A comonotonic approximation to optimal terminal wealth under a multivariate Merton model with correlated jump risk," Applied Mathematics and Computation, Elsevier, vol. 444(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xingchun, 2020. "Pricing options on the maximum or minimum of multi-assets under jump-diffusion processes," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 16-26.
    2. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    3. Ascione, Giacomo & Mehrdoust, Farshid & Orlando, Giuseppe & Samimi, Oldouz, 2023. "Foreign Exchange Options on Heston-CIR Model Under Lévy Process Framework," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    4. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    5. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    6. Ciprian Necula & Gabriel Drimus & Walter Farkas, 2019. "A general closed form option pricing formula," Review of Derivatives Research, Springer, vol. 22(1), pages 1-40, April.
    7. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    8. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    9. Cosma, Antonio & Galluccio, Stefano & Scaillet, Olivier, 2012. "Valuing American options using fast recursive projections," Working Papers unige:41856, University of Geneva, Geneva School of Economics and Management.
    10. Wang, Guanying & Wang, Xingchun & Shao, Xinjian, 2022. "Exchange options for catastrophe risk management," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    11. Buckley, Winston & Long, Hongwei & Marshall, Mario, 2016. "Numerical approximations of optimal portfolios in mispriced asymmetric Lévy markets," European Journal of Operational Research, Elsevier, vol. 252(2), pages 676-686.
    12. Sun, Qi & Xu, Weidong, 2015. "Pricing foreign equity option with stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 89-100.
    13. Wenli Zhu & Xinfeng Ruan, 2019. "Pricing Swaps on Discrete Realized Higher Moments Under the Lévy Process," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 507-532, February.
    14. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2019. "A general framework for time-changed Markov processes and applications," European Journal of Operational Research, Elsevier, vol. 273(2), pages 785-800.
    15. Li, Xin, 2023. "Generalized two-barrier proportional step options," Finance Research Letters, Elsevier, vol. 51(C).
    16. Cao, Wenbin & Guernsey, Scott B. & Linn, Scott C., 2018. "Evidence of infinite and finite jump processes in commodity futures prices: Crude oil and natural gas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 629-641.
    17. Torben G. Andersen & Nicola Fusari & Viktor Todorov, 2017. "Short-Term Market Risks Implied by Weekly Options," Journal of Finance, American Finance Association, vol. 72(3), pages 1335-1386, June.
    18. Liu, Yu-hong & Jiang, I-Ming & Hsu, Wei-tze, 2018. "Compound option pricing under a double exponential Jump-diffusion model," The North American Journal of Economics and Finance, Elsevier, vol. 43(C), pages 30-53.
    19. Zhe Li, 2020. "Equity Option Pricing with Systematic and Idiosyncratic Volatility and Jump Risks," JRFM, MDPI, vol. 13(1), pages 1-18, January.
    20. Farzad Alavi Fard & Firmin Doko Tchatoka & Sivagowry Sriananthakumar, 2021. "Maximum Entropy Evaluation of Asymptotic Hedging Error under a Generalised Jump-Diffusion Model," JRFM, MDPI, vol. 14(3), pages 1-19, February.

    More about this item

    Keywords

    Power exchange options; Correlated jump risk; Jump-diffusion processes;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:19:y:2016:i:c:p:90-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.