IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v490y2018icp13-23.html
   My bibliography  Save this article

Characterization of autoregressive processes using entropic quantifiers

Author

Listed:
  • Traversaro, Francisco
  • Redelico, Francisco O.

Abstract

The aim of the contribution is to introduce a novel information plane, the causal-amplitude informational plane. As previous works seems to indicate, Bandt and Pompe methodology for estimating entropy does not allow to distinguish between probability distributions which could be fundamental for simulation or for probability analysis purposes. Once a time series is identified as stochastic by the causal complexity-entropy informational plane, the novel causal-amplitude gives a deeper understanding of the time series, quantifying both, the autocorrelation strength and the probability distribution of the data extracted from the generating processes. Two examples are presented, one from climate change model and the other from financial markets.

Suggested Citation

  • Traversaro, Francisco & Redelico, Francisco O., 2018. "Characterization of autoregressive processes using entropic quantifiers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 13-23.
  • Handle: RePEc:eee:phsmap:v:490:y:2018:i:c:p:13-23
    DOI: 10.1016/j.physa.2017.07.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117307136
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.07.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2009. "Forbidden patterns, permutation entropy and stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2854-2864.
    2. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    3. Ferri, Gustavo L. & Figliola, Alejandra & Rosso, Osvaldo A., 2012. "Tsallis’ statistics in the variability of El Niño/Southern Oscillation during the Holocene epoch," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2154-2162.
    4. Christopher M. Moy & Geoffrey O. Seltzer & Donald T. Rodbell & David M. Anderson, 2002. "Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch," Nature, Nature, vol. 420(6912), pages 162-165, November.
    5. Pasquini, Michele & Serva, Maurizio, 1999. "Multiscale behaviour of volatility autocorrelations in a financial market," Economics Letters, Elsevier, vol. 65(3), pages 275-279, December.
    6. Zunino, L. & Pérez, D.G. & Kowalski, A. & Martín, M.T. & Garavaglia, M. & Plastino, A. & Rosso, O.A., 2008. "Fractional Brownian motion, fractional Gaussian noise, and Tsallis permutation entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6057-6068.
    7. Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997. "A Multifractal Model of Asset Returns," Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University.
    8. Rosso, Osvaldo A. & Carpi, Laura C. & Saco, Patricia M. & Gómez Ravetti, Martín & Plastino, Angelo & Larrondo, Hilda A., 2012. "Causality and the entropy–complexity plane: Robustness and missing ordinal patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 42-55.
    9. Benoit Mandelbrot, 1999. "Survey of Multifractality in Finance," Cowles Foundation Discussion Papers 1238, Cowles Foundation for Research in Economics, Yale University.
    10. Osvaldo Rosso & Felipe Olivares & Luciano Zunino & Luciana Micco & André Aquino & Angelo Plastino & Hilda Larrondo, 2013. "Characterization of chaotic maps using the permutation Bandt-Pompe probability distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 86(4), pages 1-13, April.
    11. Zunino, L. & Tabak, B.M. & Figliola, A. & Pérez, D.G. & Garavaglia, M. & Rosso, O.A., 2008. "A multifractal approach for stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6558-6566.
    12. Zunino, Luciano & Figliola, Alejandra & Tabak, Benjamin M. & Pérez, Darío G. & Garavaglia, Mario & Rosso, Osvaldo A., 2009. "Multifractal structure in Latin-American market indices," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2331-2340.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernandes, Leonardo H.S. & de Araujo, Fernando H.A. & Tabak, Benjamin M., 2021. "Insights from the (in)efficiency of Chinese sectoral indices during COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Hojin & Chang, Woojin, 2015. "Multifractal regime detecting method for financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 117-129.
    2. Gu, Rongbao & Xiong, Wei & Li, Xinjie, 2015. "Does the singular value decomposition entropy have predictive power for stock market? — Evidence from the Shenzhen stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 439(C), pages 103-113.
    3. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
    4. Zhou, Wei-Xing, 2012. "Finite-size effect and the components of multifractality in financial volatility," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 147-155.
    5. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2020. "Multifractal Analysis of Market Efficiency across Structural Breaks: Implications for the Adaptive Market Hypothesis," JRFM, MDPI, vol. 13(10), pages 1-18, October.
    6. Lee, Hojin & Song, Jae Wook & Chang, Woojin, 2016. "Multifractal Value at Risk model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 113-122.
    7. Mateos, Diego M. & Zozor, Steeve & Olivares, Felipe, 2020. "Contrasting stochasticity with chaos in a permutation Lempel–Ziv complexity — Shannon entropy plane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    8. Jiang, Jiaqi & Gu, Rongbao, 2016. "Using Rényi parameter to improve the predictive power of singular value decomposition entropy on stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 254-264.
    9. Aslam, Faheem & Aziz, Saqib & Nguyen, Duc Khuong & Mughal, Khurrum S. & Khan, Maaz, 2020. "On the efficiency of foreign exchange markets in times of the COVID-19 pandemic," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    10. Chen, Shu-Peng & He, Ling-Yun, 2010. "Multifractal spectrum analysis of nonlinear dynamical mechanisms in China’s agricultural futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1434-1444.
    11. Chen, Wang & Wei, Yu & Lang, Qiaoqi & Lin, Yu & Liu, Maojuan, 2014. "Financial market volatility and contagion effect: A copula–multifractal volatility approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 289-300.
    12. Chen, Fei & Diebold, Francis X. & Schorfheide, Frank, 2013. "A Markov-switching multifractal inter-trade duration model, with application to US equities," Journal of Econometrics, Elsevier, vol. 177(2), pages 320-342.
    13. Zhao, Xiaojun & Ji, Mengfan & Zhang, Na & Shang, Pengjian, 2020. "Permutation transition entropy: Measuring the dynamical complexity of financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    14. Hasan, Rashid & Mohammad, Salim M., 2015. "Multifractal analysis of Asian markets during 2007–2008 financial crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 746-761.
    15. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2009. "Forbidden patterns, permutation entropy and stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2854-2864.
    16. Yin, Yi & Shang, Pengjian, 2016. "Weighted permutation entropy based on different symbolic approaches for financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 137-148.
    17. Zhang, Yongping & Shang, Pengjian, 2018. "Refined composite multiscale weighted-permutation entropy of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 189-199.
    18. Hasan, Rashid & Mohammed Salim, M., 2017. "Power law cross-correlations between price change and volume change of Indian stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 620-631.
    19. Tetsuya Takaishi, 2017. "Statistical properties and multifractality of Bitcoin," Papers 1707.07618, arXiv.org, revised May 2018.
    20. Grahovac, Danijel & Leonenko, Nikolai N., 2014. "Detecting multifractal stochastic processes under heavy-tailed effects," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 78-89.

    More about this item

    Keywords

    Permutation entropy; Time series analysis;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:490:y:2018:i:c:p:13-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.