IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/30649.html
   My bibliography  Save this paper

Subdynamics of financial data from fractional Fokker-Planck equation

Author

Listed:
  • Janczura, Joanna
  • Wyłomańska, Agnieszka

Abstract

In exhibition of many real market data we observe characteristic traps. This behavior is especially noticeable for processes corresponding to stock prices. Till now, such economic systems were analyzed in the following manner: before the further investigation trap-data were removed or omitted and then the conventional methods used. Unfortunately, for many observations this approach seems not to be reasonable therefore we propose an alternative approach based on the subdiffusion models that demonstrate such characteristic behavior and their corresponding probability density function (pdf) is described by the fractional Fokker-Planck equation. In this paper we model market data using subdiffusion with a constant force. We demonstrate properties of the considered systems and propose estimation methods.

Suggested Citation

  • Janczura, Joanna & Wyłomańska, Agnieszka, 2009. "Subdynamics of financial data from fractional Fokker-Planck equation," MPRA Paper 30649, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:30649
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/30649/1/MPRA_paper_30649.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Foad Shokrollahi & Marcin Marcin Magdziarz, 2020. "Equity warrant pricing under subdiffusive fractional Brownian motion of the short rate," Papers 2007.12228, arXiv.org, revised Nov 2020.
    2. Sebastian, Orzeł & Agnieszka, Wyłomańska, 2010. "Calibration of the subdiffusive arithmetic Brownian motion with tempered stable waiting-times," MPRA Paper 28593, University Library of Munich, Germany.
    3. Dupret, Jean-Loup & Hainaut, Donatien, 2022. "A subdiffusive stochastic volatility jump model," LIDAM Discussion Papers ISBA 2022001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Kumar, A. & Wyłomańska, A. & Połoczański, R. & Sundar, S., 2017. "Fractional Brownian motion time-changed by gamma and inverse gamma process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 648-667.
    5. Xie, Jiaquan & Yao, Zhibin & Gui, Hailian & Zhao, Fuqiang & Li, Dongyang, 2018. "A two-dimensional Chebyshev wavelets approach for solving the Fokker-Planck equations of time and space fractional derivatives type with variable coefficients," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 197-208.
    6. Gu, Hui & Liang, Jin-Rong & Zhang, Yun-Xiu, 2012. "Time-changed geometric fractional Brownian motion and option pricing with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 3971-3977.
    7. Jabłońska-Sabuka, Matylda & Teuerle, Marek & Wyłomańska, Agnieszka, 2017. "Bivariate sub-Gaussian model for stock index returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 628-637.
    8. Jelena Ryvkina, 2015. "Fractional Brownian Motion with Variable Hurst Parameter: Definition and Properties," Journal of Theoretical Probability, Springer, vol. 28(3), pages 866-891, September.
    9. Anh, V.V. & Leonenko, N.N. & Sikorskii, A., 2017. "Stochastic representation of fractional Bessel-Riesz motion," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 135-139.
    10. Foad Shokrollahi, 2016. "Subdiffusive fractional Brownian motion regime for pricing currency options under transaction costs," Papers 1612.06665, arXiv.org, revised Aug 2017.
    11. Nikolai Leonenko & Ely Merzbach, 2015. "Fractional Poisson Fields," Methodology and Computing in Applied Probability, Springer, vol. 17(1), pages 155-168, March.

    More about this item

    Keywords

    subdiffusion; constant periods; fractional Fokker-Planck equation; stock prices;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:30649. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.