IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v482y2017icp433-443.html
   My bibliography  Save this article

Vaccination and public trust: A model for the dissemination of vaccination behaviour with external intervention

Author

Listed:
  • Dorso, Claudio O.
  • Medus, Andrés
  • Balenzuela, Pablo

Abstract

Vaccination is widely recognized as the most effective way of immunization against many infectious diseases. However, unfounded claims about supposed side effects of some vaccines have contributed to spread concern and fear among people, thus inducing vaccination refusal. MMR (Measles, Mumps and Rubella) vaccine coverage has undergone an important decrease in a large part of Europe and US as a consequence of erroneously alleged side effects, leading to recent measles outbreaks. There is evidence that clusterization of unvaccinated individuals may lead to epidemics way larger that the ones that might appear in the case that unvaccinated agents are distributed at random in the population. In this work we explore the emergence of those clusters as a consequence of the social interaction driven mainly by homophily, where vaccination behaviour is part of a process of cultural dissemination in the spirit of Axelrod’s model. The ingredients of this calculation encompass: (i) interacting agents which are to decide if they vaccinate or not their children, (ii) their interaction with a small subset of stubborn agents who believe that the MMR vaccine is not safe and (iii) government sponsored propaganda trying to convince people of the benefits of vaccination. We find that these clusters, which emerge as a dynamical outcome of the model, are the responsible of the increasing probability of the occurrence of measles outbreaks, even in scenarios where the WHO (World Health Organization) recommendation of 95% vaccine coverage is fulfilled. However, we also illustrate that the mitigating effect of a public health campaign, could effectively reduce the impact and size of outbreaks.

Suggested Citation

  • Dorso, Claudio O. & Medus, Andrés & Balenzuela, Pablo, 2017. "Vaccination and public trust: A model for the dissemination of vaccination behaviour with external intervention," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 433-443.
  • Handle: RePEc:eee:phsmap:v:482:y:2017:i:c:p:433-443
    DOI: 10.1016/j.physa.2017.04.112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117304181
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.04.112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chris T Bauch & Samit Bhattacharyya, 2012. "Evolutionary Game Theory and Social Learning Can Determine How Vaccine Scares Unfold," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-12, April.
    2. Pinto, Sebastián & Balenzuela, Pablo & Dorso, Claudio O., 2016. "Setting the agenda: Different strategies of a Mass Media in a model of cultural dissemination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 378-390.
    3. M. E. J. Newman & D. J. Watts, 1999. "Scaling and Percolation in the Small-World Network Model," Working Papers 99-05-034, Santa Fe Institute.
    4. Robert M. Bond & Christopher J. Fariss & Jason J. Jones & Adam D. I. Kramer & Cameron Marlow & Jaime E. Settle & James H. Fowler, 2012. "A 61-million-person experiment in social influence and political mobilization," Nature, Nature, vol. 489(7415), pages 295-298, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muller, Eitan & Peres, Renana, 2019. "The effect of social networks structure on innovation performance: A review and directions for research," International Journal of Research in Marketing, Elsevier, vol. 36(1), pages 3-19.
    2. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
    3. Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
    4. Vinayak, & Raghuvanshi, Adarsh & kshitij, Avinash, 2023. "Signatures of capacity development through research collaborations in artificial intelligence and machine learning," Journal of Informetrics, Elsevier, vol. 17(1).
    5. Kulsum, Umma & Alam, Muntasir & Kamrujjaman, Md., 2024. "Modeling and investigating the dilemma of early and delayed vaccination driven by the dynamics of imitation and aspiration," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    6. Johnson, Nathan & Turnbull, Benjamin & Reisslein, Martin, 2022. "Social media influence, trust, and conflict: An interview based study of leadership perceptions," Technology in Society, Elsevier, vol. 68(C).
    7. Alan Gerber & Mitchell Hoffman & John Morgan & Collin Raymond, 2020. "One in a Million: Field Experiments on Perceived Closeness of the Election and Voter Turnout," American Economic Journal: Applied Economics, American Economic Association, vol. 12(3), pages 287-325, July.
    8. Kenju Kamei & Louis Putterman & Jean-Robert Tyran, 2019. "Civic Engagement as a Second-Order Public Good: The Cooperative Underpinnings of the Accountable State," Discussion Papers 19-10, University of Copenhagen. Department of Economics.
    9. Ruyi Ge & Juan Feng & Bin Gu, 2016. "Borrower’s default and self-disclosure of social media information in P2P lending," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-6, December.
    10. Jiang, Lincheng & Zhao, Xiang & Ge, Bin & Xiao, Weidong & Ruan, Yirun, 2019. "An efficient algorithm for mining a set of influential spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 58-65.
    11. Kristina Gavin Bigsby & Jeffrey W. Ohlmann & Kang Zhao, 2017. "Online and Off the Field: Predicting School Choice in College Football Recruiting from Social Media Data," Decision Analysis, INFORMS, vol. 14(4), pages 261-273, December.
    12. Lahtinen, Jani & Kertész, János & Kaski, Kimmo, 2005. "Sandpiles on Watts–Strogatz type small-worlds," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 349(3), pages 535-547.
    13. Yann Algan & Quoc-Anh Do & Nicolò Dalvit & Alexis Le Chapelain & Yves Zenou, 2015. "How Social Networks Shape Our Beliefs: A Natural Experiment among Future French Politicians," Working Papers hal-03459820, HAL.
    14. Mechtenberg, Lydia & Tyran, Jean-Robert, 2019. "Voter motivation and the quality of democratic choice," Games and Economic Behavior, Elsevier, vol. 116(C), pages 241-259.
    15. Daniele Barchiesi & Helen Susannah Moat & Christian Alis & Steven Bishop & Tobias Preis, 2015. "Quantifying International Travel Flows Using Flickr," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-8, July.
    16. repec:spo:wpmain:info:hdl:2441/78vacv4udu92eq3fec89svm9uv is not listed on IDEAS
    17. Carolin V. Zorell, 2020. "Nudges, Norms, or Just Contagion? A Theory on Influences on the Practice of (Non-)Sustainable Behavior," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    18. Julian Freitag & Anna Kerkhof & Johannes Münster, 2021. "Selective sharing of news items and the political position of news outlets," ECONtribute Discussion Papers Series 056, University of Bonn and University of Cologne, Germany.
    19. Yanling Zhang & Feng Fu, 2018. "Strategy intervention for the evolution of fairness," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-13, May.
    20. Paul Resnick & Eytan Adar & Cliff Lampe, 2015. "What Social Media Data We Are Missing and How to Get It," The ANNALS of the American Academy of Political and Social Science, , vol. 659(1), pages 192-206, May.
    21. Deka, Aniruddha & Bhattacharyya, Samit, 2022. "The effect of human vaccination behaviour on strain competition in an infectious disease: An imitation dynamic approach," Theoretical Population Biology, Elsevier, vol. 143(C), pages 62-76.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:482:y:2017:i:c:p:433-443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.