IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v462y2016icp1286-1293.html
   My bibliography  Save this article

A two-stage broadcast message propagation model in social networks

Author

Listed:
  • Wang, Dan
  • Cheng, Shun-Jun

Abstract

Message propagation in social networks is becoming a popular topic in complex networks. One of the message types in social networks is called broadcast message. It refers to a type of message which has a unique and unknown destination for the publisher, such as ‘lost and found’. Its propagation always has two stages. Due to this feature, rumor propagation model and epidemic propagation model have difficulty in describing this message’s propagation accurately. In this paper, an improved two-stage susceptible–infected–removed model is proposed. We come up with the concept of the first forwarding probability and the second forwarding probability. Another part of our work is figuring out the influence to the successful message transmission chance in each level resulting from multiple reasons, including the topology of the network, the receiving probability, the first stage forwarding probability, the second stage forwarding probability as well as the length of the shortest path between the publisher and the relevant destination. The proposed model has been simulated on real networks and the results proved the model’s effectiveness.

Suggested Citation

  • Wang, Dan & Cheng, Shun-Jun, 2016. "A two-stage broadcast message propagation model in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1286-1293.
  • Handle: RePEc:eee:phsmap:v:462:y:2016:i:c:p:1286-1293
    DOI: 10.1016/j.physa.2016.07.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116304344
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.07.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xue Zhou & Yong Hu & Yue Wu & Xi Xiong, 2015. "Influence analysis of information erupted on social networks based onSIRmodel," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 26(02), pages 1-11.
    2. Dottori, M. & Fabricius, G., 2015. "SIR model on a dynamical network and the endemic state of an infectious disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 25-35.
    3. Freeman, Mark & McVittie, James & Sivak, Iryna & Wu, Jianhong, 2014. "Viral information propagation in the Digg online social network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 87-94.
    4. Shi, Hongjing & Duan, Zhisheng & Chen, Guanrong, 2008. "An SIS model with infective medium on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2133-2144.
    5. Zhao, Laijun & Wang, Jiajia & Chen, Yucheng & Wang, Qin & Cheng, Jingjing & Cui, Hongxin, 2012. "SIHR rumor spreading model in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2444-2453.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Feihu & Qiao, Shaojie & Peng, Jian & Guo, Bing & Xiong, Xi & Han, Nan, 2019. "A movement model for air passengers based on trip purpose," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 798-808.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Haiying & Wang, Jun & Small, Michael, 2018. "Knowledge transmission model with differing initial transmission and retransmission process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 478-488.
    2. Zhao, Danling & Sun, Jianbin & Tan, Yuejin & Wu, Jianhong & Dou, Yajie, 2018. "An extended SEIR model considering homepage effect for the information propagation of online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1019-1031.
    3. Ping Jiang & Xiangbin Yan, 2019. "A quantitative model for the spread of online information," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(4), pages 1981-2001, July.
    4. Hosni, Adil Imad Eddine & Li, Kan & Ahmad, Sadique, 2020. "Analysis of the impact of online social networks addiction on the propagation of rumors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    5. Jia, Pingqi & Wang, Chao & Zhang, Gaoyu & Ma, Jianfeng, 2019. "A rumor spreading model based on two propagation channels in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 342-353.
    6. Zan, Yongli & Wu, Jianliang & Li, Ping & Yu, Qinglin, 2014. "SICR rumor spreading model in complex networks: Counterattack and self-resistance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 159-170.
    7. Ouyang, Bo & Teng, Zhaosheng & Tang, Qiu, 2016. "Dynamics in local influence cascading models," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 182-186.
    8. Lu, Xuefei & Borgonovo, Emanuele, 2023. "Global sensitivity analysis in epidemiological modeling," European Journal of Operational Research, Elsevier, vol. 304(1), pages 9-24.
    9. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    10. Huo, Liang’an & Jiang, Jiehui & Gong, Sixing & He, Bing, 2016. "Dynamical behavior of a rumor transmission model with Holling-type II functional response in emergency event," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 228-240.
    11. Keshri, Ajit Kumar & Mishra, Bimal Kumar & Rukhaiyar, Bansidhar Prasad, 2020. "When rumors create chaos in e-commerce," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    12. Nizamani, Sarwat & Memon, Nasrullah & Galam, Serge, 2014. "From public outrage to the burst of public violence: An epidemic-like model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 620-630.
    13. Yang, Meng & Chen, Guanrong & Fu, Xinchu, 2011. "A modified SIS model with an infective medium on complex networks and its global stability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2408-2413.
    14. Maltz, Alberto & Fabricius, Gabriel, 2016. "SIR model with local and global infective contacts: A deterministic approach and applications," Theoretical Population Biology, Elsevier, vol. 112(C), pages 70-79.
    15. Zhu, Hui & Huang, Cheng & Lu, Rongxing & Li, Hui, 2016. "Modelling information dissemination under privacy concerns in social media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 53-63.
    16. Zhao, Laijun & Xie, Wanlin & Gao, H. Oliver & Qiu, Xiaoyan & Wang, Xiaoli & Zhang, Shuhai, 2013. "A rumor spreading model with variable forgetting rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 6146-6154.
    17. Wang, Tao & He, Juanjuan & Wang, Xiaoxia, 2018. "An information spreading model based on online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 488-496.
    18. Yi, Chengqi & Bao, Yuanyuan & Xue, Yibo, 2016. "Mining the key predictors for event outbreaks in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 247-260.
    19. Jie, Renlong & Qiao, Jian & Xu, Genjiu & Meng, Yingying, 2016. "A study on the interaction between two rumors in homogeneous complex networks under symmetric conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 129-142.
    20. Juang, Jonq & Liang, Yu-Hao, 2015. "Analysis of a general SIS model with infective vectors on the complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 382-395.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:462:y:2016:i:c:p:1286-1293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.