IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v456y2016icp228-234.html
   My bibliography  Save this article

Roles of edge weights on epidemic spreading dynamics

Author

Listed:
  • Zhan, Xiu-Xiu
  • Liu, Chuang
  • Zhang, Zi-Ke
  • Sun, Gui-Quan

Abstract

Epidemic spreading on complex networks has attracted much attention in recent years. A large number of studies have focused on investigating the impacts of network topology on spreading dynamics. However, the weighted network is very common in real systems, and we attempt to study the role of edge weights on epidemic spreading. In this work, the spreading process was presented as the SIS model and three edge-breaking strategies according to the weight of the SI links were performed simultaneously, which was used to illustrate the influence of the edge weights. Simulation results on three real networks showed the different spreading patterns of different edge-breaking strategies, which in turn indicated the influence of edge weights on the spreading process. Therefore we can take different measures at different periods according to the edge weights to impede the epidemic. In addition, the detailed analyses of relationship between the edge weight and the network structure was given to interpret the role of edge weights in the epidemic spreading process.

Suggested Citation

  • Zhan, Xiu-Xiu & Liu, Chuang & Zhang, Zi-Ke & Sun, Gui-Quan, 2016. "Roles of edge weights on epidemic spreading dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 228-234.
  • Handle: RePEc:eee:phsmap:v:456:y:2016:i:c:p:228-234
    DOI: 10.1016/j.physa.2016.03.088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116300863
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.03.088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giorgio Fagiolo & Javier Reyes & Stefano Schiavo, 2010. "The evolution of the world trade web: a weighted-network analysis," Journal of Evolutionary Economics, Springer, vol. 20(4), pages 479-514, August.
    2. Dong, Chao & Yin, Qiuju & Liu, Wenyang & Yan, Zhijun & Shi, Tianyu, 2015. "Can rewiring strategy control the epidemic spreading?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 169-177.
    3. Zhou, Yinzuo & Xia, Yingjie, 2014. "Epidemic spreading on weighted adaptive networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 16-23.
    4. Christel Kamp & Mathieu Moslonka-Lefebvre & Samuel Alizon, 2013. "Epidemic Spread on Weighted Networks," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Chuang & Zhou, Nan & Zhan, Xiu-Xiu & Sun, Gui-Quan & Zhang, Zi-Ke, 2020. "Markov-based solution for information diffusion on adaptive social networks," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    2. Zhan, Xiu-Xiu & Liu, Chuang & Zhou, Ge & Zhang, Zi-Ke & Sun, Gui-Quan & Zhu, Jonathan J.H. & Jin, Zhen, 2018. "Coupling dynamics of epidemic spreading and information diffusion on complex networks," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 437-448.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shanshan Wan & Zhuo Chen & Cheng Lyu & Ruofan Li & Yuntao Yue & Ying Liu, 2022. "Research on disaster information dissemination based on social sensor networks," International Journal of Distributed Sensor Networks, , vol. 18(3), pages 15501329221, March.
    2. Fredy Cepeda-Lopez & Fredy Gamboa-Estrada & Carlos Leon-Rincón & Hernán Rincon-Castro, 2022. "Colombian Liberalization and Integration into World Trade Markets: Much Ado about Nothing," Revista de Economía del Rosario, Universidad del Rosario, vol. 25(2), pages 1-44, December.
    3. Gautier M Krings & Jean-François Carpantier & Jean-Charles Delvenne, 2014. "Trade Integration and Trade Imbalances in the European Union: A Network Perspective," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-14, January.
    4. Han, Dun & Sun, Mei, 2014. "Can memory and conformism resolve the vaccination dilemma?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 95-104.
    5. Carattini, Stefano & Fankhauser, Sam & Gao, Jianjian & Gennaioli, Caterina & Panzarasa, Pietro, 2023. "What does network analysis teach us about international environmental cooperation?," Ecological Economics, Elsevier, vol. 205(C).
    6. Chessa, Michela & Persenda, Arnaud & Torre, Dominique, 2023. "Brexit and Canadadvent: An application of graphs and hypergraphs to recent international trade agreements," International Economics, Elsevier, vol. 175(C), pages 1-12.
    7. Fathin Faizah Said, 2017. "Global Banking on the Financial Network Modelling: Sectorial Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 49(2), pages 227-253, February.
    8. Barberis, Eduardo & Freddi, Daniela & Giammetti, Raffaele & Polidori, Paolo & Teobaldelli, Désirée & Viganò, Elena, 2020. "Trade Relationships in the European Pork Value Chain: A Network Analysis," Economia agro-alimentare / Food Economy, Italian Society of Agri-food Economics/Società Italiana di Economia Agro-Alimentare (SIEA), vol. 22(01), May.
    9. Iván Arribas & Francisco Pérez & Emili Tortosa-Ausina, 2014. "The dynamics of international trade integration: 1967–2004," Empirical Economics, Springer, vol. 46(1), pages 19-41, February.
    10. Huang, Yunhan & Ding, Li & Feng, Yun, 2016. "A novel epidemic spreading model with decreasing infection rate based on infection times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 1041-1048.
    11. João Amador & Sónia Cabral, 2017. "Networks of Value-added Trade," The World Economy, Wiley Blackwell, vol. 40(7), pages 1291-1313, July.
    12. Shade T Shutters & José Lobo & Rachata Muneepeerakul & Deborah Strumsky & Charlotta Mellander & Matthias Brachert & Teresa Farinha & Luis M A Bettencourt, 2018. "Urban occupational structures as information networks: The effect on network density of increasing number of occupations," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-14, May.
    13. Giovanni Carnazza & Paolo Liberati & Agnese Sacchi, 2024. "Political instability and international trade in the European Union: A network-based approach," Discussion Papers 2024/319, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
    14. Zongning Wu & Hongbo Cai & Ruining Zhao & Ying Fan & Zengru Di & Jiang Zhang, 2020. "A Topological Analysis of Trade Distance: Evidence from the Gravity Model and Complex Flow Networks," Sustainability, MDPI, vol. 12(9), pages 1-17, April.
    15. Glenn Magerman & Karolien De Bruyne & Jan Van Hove, 2020. "Pecking order and core‐periphery in international trade," Review of International Economics, Wiley Blackwell, vol. 28(4), pages 1113-1141, September.
    16. Rosanna Grassi & Paolo Bartesaghi & Stefano Benati & Gian Paolo Clemente, 2021. "Multi-Attribute Community Detection in International Trade Network," Networks and Spatial Economics, Springer, vol. 21(3), pages 707-733, September.
    17. Zhan, Xiu-Xiu & Liu, Chuang & Sun, Gui-Quan & Zhang, Zi-Ke, 2018. "Epidemic dynamics on information-driven adaptive networks," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 196-204.
    18. Paolo Bartesaghi & Gian Paolo Clemente & Rosanna Grassi, 2020. "Community structure in the World Trade Network based on communicability distances," Papers 2001.06356, arXiv.org, revised Jul 2020.
    19. João Amador & Sónia Cabral & Rossana Mastrandrea & Franco Ruzzenenti, 2018. "Who’s Who in Global Value Chains? A Weighted Network Approach," Open Economies Review, Springer, vol. 29(5), pages 1039-1059, November.
    20. repec:hal:spmain:info:hdl:2441/6h7io1v56e8k4qtht2cuvjcfa5 is not listed on IDEAS
    21. Marcos Duenas & Rossana Mastrandrea & Matteo Barigozzi & Giorgio Fagiolo, 2017. "Spatio-Temporal Patterns of the International Merger and Acquisition Network," LEM Papers Series 2017/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:456:y:2016:i:c:p:228-234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.