IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v104y2017icp268-281.html
   My bibliography  Save this article

Parameters tracking identification based on finite-time synchronization for multi-links complex network via periodically switch control

Author

Listed:
  • Zhao, Hui
  • Li, Lixiang
  • Xiao, Jinghua
  • Yang, Yixian
  • Zheng, Mingwen

Abstract

In this paper, a class of periodically switch control method is proposed to achieve finite-time parameters tracking identification and synchronization for multi-link complex networks. This periodically switch control is an optimal control, two convertible control intensities are given in a fixed period instead of continuous high control intensity. Meanwhile, we give an effective analysis for complex network model with multiple constant time-delays and time-varying delays, we overcome these difficulties of time-delays and unknown parameters. The parameters estimation, topological identification are achieved based on parameters tracking identification of drive-response networks. Meanwhile, the corresponding identification and synchronization criteria are obtained based on Lyapunov function, linear matrix inequality (LMI) and finite-time stability theory. Finally, numerical simulations are given to verify the effectiveness of our proposed method.

Suggested Citation

  • Zhao, Hui & Li, Lixiang & Xiao, Jinghua & Yang, Yixian & Zheng, Mingwen, 2017. "Parameters tracking identification based on finite-time synchronization for multi-links complex network via periodically switch control," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 268-281.
  • Handle: RePEc:eee:chsofr:v:104:y:2017:i:c:p:268-281
    DOI: 10.1016/j.chaos.2017.08.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917303557
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.08.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Jianshe & Jiao, Licheng, 2007. "Observer-based synchronization in complex dynamical networks with nonsymmetric coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 469-480.
    2. Peng, Ya-Fu, 2009. "Robust intelligent sliding model control using recurrent cerebellar model articulation controller for uncertain nonlinear chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 150-167.
    3. Wu, Jianshe & Jiao, Licheng, 2007. "Synchronization in complex delayed dynamical networks with nonsymmetric coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 513-530.
    4. Li, Lixiang & Li, Weiwei & Kurths, Jürgen & Luo, Qun & Yang, Yixian & Li, Shudong, 2015. "Pinning adaptive synchronization of a class of uncertain complex dynamical networks with multi-link against network deterioration," Chaos, Solitons & Fractals, Elsevier, vol. 72(C), pages 20-34.
    5. Hui Zhao & Lixiang Li & Haipeng Peng & Jürgen Kurths & Jinghua Xiao & Yixian Yang, 2015. "Anti-synchronization for stochastic memristor-based neural networks with non-modeled dynamics via adaptive control approach," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 88(5), pages 1-10, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dawei Ding & Ya Wang & Yongbing Hu & Zongli Yang & Hongwei Zhang & Xu Zhang, 2022. "Pinning synchronization and parameter identification of fractional-order complex-valued dynamical networks with multiple weights," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(8), pages 1-12, August.
    2. Sun, Yanqin & Wu, Huaiyu & Chen, Zhihuan & Zheng, Xiujuan & Chen, Yang, 2021. "Outer synchronization of two different multi-links complex networks by chattering-free control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Jianshe & Jiao, Licheng, 2008. "Synchronization in dynamic networks with nonsymmetrical time-delay coupling based on linear feedback controllers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2111-2119.
    2. Liang, Yi & Wang, Xingyuan, 2014. "Synchronization in complex networks with non-delay and delay couplings via intermittent control with two switched periods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 434-444.
    3. Tseng, Jui-Pin, 2016. "A novel approach to synchronization of nonlinearly coupled network systems with delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 266-280.
    4. Weiwei Zhang & Jinde Cao & Dingyuan Chen & Ahmed Alsaedi, 2019. "Out Lag Synchronization of Fractional Order Delayed Complex Networks with Coupling Delay via Pinning Control," Complexity, Hindawi, vol. 2019, pages 1-7, August.
    5. Cheng, Ranran & Peng, Mingshu & Yu, Weibin, 2014. "Pinning synchronization of delayed complex dynamical networks with nonlinear coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 426-431.
    6. Ding, Dong & Tang, Ze & Wang, Yan & Ji, Zhicheng, 2021. "Secure synchronization of complex networks under deception attacks against vulnerable nodes," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    7. Ding, Dawei & Yan, Jie & Wang, Nian & Liang, Dong, 2017. "Pinning synchronization of fractional order complex-variable dynamical networks with time-varying coupling," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 41-50.
    8. Yuan, Manman & Wang, Weiping & Luo, Xiong & Liu, Linlin & Zhao, Wenbing, 2018. "Finite-time anti-synchronization of memristive stochastic BAM neural networks with probabilistic time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 244-260.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:104:y:2017:i:c:p:268-281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.