IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v444y2016icp373-387.html
   My bibliography  Save this article

A new method optimizing the subgraph centrality of large networks

Author

Listed:
  • Yan, Xin
  • Li, Chunlin
  • Zhang, Ling
  • Hu, Yaogai

Abstract

Since many realistic networks such as wireless sensor/ad hoc networks usually do not agree very well with the basic network models such as small-word and scale-free models, we often need to obtain some expected structural features such as a small average path length and a regular degree distribution while optimizing the connectivity of these networks. Although a minor addition of links for optimizing network connectivity is not likely to change the structural properties of a network, it is necessary to investigate the impact of link addition on network properties as the number of the added links increases. However, to the best of our knowledge, the study of that problem has not been found so far. Furthermore, two closely related questions to that problem, i.e., how to measure and how to improve network connectivity, have not been studied carefully enough yet. To address the three problems above, the authors derive a better measure of network connectivity for large networks and a new strategy that can increase/decrease network connectivity the most, and propose a spectral density algorithm optimizing the connectivity of large networks, which is able to indicate the impact on the structural properties of a network while increasing/decreasing its connectivity, providing us a guided optimization of network connectivity. In other words, our algorithm can optimize not only the connectivity of a large network but also its structural features. Meanwhile, our new findings about spectral density are also concluded in this paper. In addition, we may also apply this algorithm to solve all eigenvalues of an N×N matrix, with a low complexity of O(N2) at most.

Suggested Citation

  • Yan, Xin & Li, Chunlin & Zhang, Ling & Hu, Yaogai, 2016. "A new method optimizing the subgraph centrality of large networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 373-387.
  • Handle: RePEc:eee:phsmap:v:444:y:2016:i:c:p:373-387
    DOI: 10.1016/j.physa.2015.10.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115008808
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.10.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Shan & Li, Sheng & Ma, Hongru, 2009. "Effect of edge removal on topological and functional robustness of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(11), pages 2243-2253.
    2. G. Paul & T. Tanizawa & S. Havlin & H. Stanley, 2004. "Optimization of robustness of complex networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 187-191, March.
    3. Yan, Xin & Wu, Yang & Li, Xiaohui & Li, Chunlin & Hu, Yaogai, 2014. "Eigenvector perturbations of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 106-118.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kashyap, G. & Ambika, G., 2019. "Link deletion in directed complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 631-643.
    2. Wu, Jian-Jun & Gao, Zi-You & Sun, Hui-jun, 2008. "Optimal traffic networks topology: A complex networks perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 1025-1032.
    3. Chen, Sai & Ding, Yueting & Zhang, Yanfang & Zhang, Ming & Nie, Rui, 2022. "Study on the robustness of China's oil import network," Energy, Elsevier, vol. 239(PB).
    4. Xia Cao & Chuanyun Li & Wei Chen & Jinqiu Li & Chaoran Lin, 2020. "Research on the invulnerability and optimization of the technical cooperation innovation network based on the patent perspective—A case study of new energy vehicles," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-19, September.
    5. Beygelzimer, Alina & Grinstein, Geoffrey & Linsker, Ralph & Rish, Irina, 2005. "Improving network robustness by edge modification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 357(3), pages 593-612.
    6. Feng, Zhidan & Song, Huimin & Qi, Xingqin, 2024. "A novel algorithm for the generalized network dismantling problem based on dynamic programming," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    7. Dong, Gaogao & Tian, Lixin & Du, Ruijin & Fu, Min & Stanley, H. Eugene, 2014. "Analysis of percolation behaviors of clustered networks with partial support–dependence relations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 370-378.
    8. Meng, Xiangyi & Zhang, Jian-Wei & Guo, Hong, 2016. "Quantum Brownian motion model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 281-288.
    9. Yin, Hongli & Zhang, Siying, 2016. "Minimum structural controllability problems of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 467-476.
    10. Quayle, A.P. & Siddiqui, A.S. & Jones, S.J.M., 2006. "Preferential network perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 823-840.
    11. Deng, Ye & Wu, Jun & Tan, Yue-jin, 2016. "Optimal attack strategy of complex networks based on tabu search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 74-81.
    12. Yang, Zhirou & Liu, Jing, 2018. "A memetic algorithm for determining the nodal attacks with minimum cost on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1041-1053.
    13. Ichinose, Genki & Tsuchiya, Tomohiro & Watanabe, Shunsuke, 2021. "Robustness of football passing networks against continuous node and link removals," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    14. Das, Sai Saranga & Raman, Karthik, 2022. "Effect of dormant spare capacity on the attack tolerance of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    15. Vitor H. P. Louzada & Fabio Daolio & Hans J. Herrmann & Marco Tomassini, "undated". "Smart rewiring for network robustness," Working Papers ETH-RC-14-004, ETH Zurich, Chair of Systems Design.
    16. Yu, Yang & Deng, Ye & Tan, Suo-Yi & Wu, Jun, 2018. "Efficient disintegration strategy in directed networks based on tabu search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 435-442.
    17. Peng, Guan-sheng & Wu, Jun, 2016. "Optimal network topology for structural robustness based on natural connectivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 212-220.
    18. Vodák, Rostislav & Bíl, Michal & Sedoník, Jiří, 2015. "Network robustness and random processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 368-382.
    19. Deng, ZhengHong & Xu, Jiwei & Song, Qun & Hu, Bin & Wu, Tao & Huang, Panfei, 2020. "Robustness of multi-agent formation based on natural connectivity," Applied Mathematics and Computation, Elsevier, vol. 366(C).
    20. B. G. Tóth, 2021. "The effect of attacks on the railway network of Hungary," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(2), pages 567-587, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:444:y:2016:i:c:p:373-387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.