IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i12p3435-3445.html
   My bibliography  Save this article

Tsallis entropy induced metrics and CAT(k) spaces

Author

Listed:
  • Kalogeropoulos, Nikos

Abstract

Generalizing the group structure of the Euclidean space, we construct a Riemannian metric on the deformed set Rqn induced by the Tsallis entropy composition property. We show that the Tsallis entropy is a “hyperbolic analogue” of the “Euclidean” Boltzmann/Gibbs/Shannon entropy and find a geometric interpretation for the nonextensive parameter q. We provide a geometric explanation of the uniqueness of the Tsallis entropy as reflected through its composition property, which is provided by the Abe and the Santos axioms. For two, or more, interacting systems described by the Tsallis entropy, having different values of q, we argue why a suitable extension of this construction is provided by the Cartan/Alexandrov/Toponogov metric spaces with a uniform negative curvature upper bound.

Suggested Citation

  • Kalogeropoulos, Nikos, 2012. "Tsallis entropy induced metrics and CAT(k) spaces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3435-3445.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:12:p:3435-3445
    DOI: 10.1016/j.physa.2012.02.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711200129X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.02.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Creaco, Anthony J. & Kalogeropoulos, Nikolaos, 2019. "Irreversibility from staircases in symplectic embeddings," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 497-509.
    2. Balankin, Alexander S. & Bory-Reyes, Juan & Shapiro, Michael, 2016. "Towards a physics on fractals: Differential vector calculus in three-dimensional continuum with fractal metric," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 345-359.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:12:p:3435-3445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.