IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v443y2016icp526-536.html
   My bibliography  Save this article

How to keep punishment to maintain cooperation: Introducing social vaccine

Author

Listed:
  • Yamamoto, Hitoshi
  • Okada, Isamu

Abstract

Although there is much support for the punishment system as a sophisticated approach to resolving social dilemmas, more than a few researchers have also pointed out the limitations of such an approach. Second-order free riding is a serious issue facing the punishment system. Various pioneering works have suggested that an anti-social behavior or noise stemming from a mutation may, surprisingly, be helpful for avoiding second-order freeloaders. In this work, we show through mathematical analysis and an agent-based simulation of a model extending the meta-norms game that the coercive introduction of a small number of non-cooperators can maintain a cooperative regime robustly. This paradoxical idea was inspired by the effect of a vaccine, which is a weakened pathogen injected into a human body to create antibodies and ward off infection by that pathogen. Our expectation is that the coercive introduction of a few defectors, i.e., a social vaccine, will help maintain a highly cooperative regime because it will ensure that the punishment system works.

Suggested Citation

  • Yamamoto, Hitoshi & Okada, Isamu, 2016. "How to keep punishment to maintain cooperation: Introducing social vaccine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 526-536.
  • Handle: RePEc:eee:phsmap:v:443:y:2016:i:c:p:526-536
    DOI: 10.1016/j.physa.2015.08.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115007189
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.08.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Axelrod, Robert, 1986. "An Evolutionary Approach to Norms," American Political Science Review, Cambridge University Press, vol. 80(4), pages 1095-1111, December.
    2. José Manuel Galán & Luis R. Izquierdo, 2005. "Appearances Can Be Deceiving: Lessons Learned Re-Implementing Axelrod's 'Evolutionary Approach to Norms'," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 8(3), pages 1-2.
    3. Anna Dreber & David G. Rand & Drew Fudenberg & Martin A. Nowak, 2008. "Winners don’t punish," Nature, Nature, vol. 452(7185), pages 348-351, March.
    4. Michael D. Cohen & Rick L. Riolo & Robert Axelrod, 2001. "The Role Of Social Structure In The Maintenance Of Cooperative Regimes," Rationality and Society, , vol. 13(1), pages 5-32, February.
    5. Ernst Fehr & Simon Gächter, 2002. "Altruistic punishment in humans," Nature, Nature, vol. 415(6868), pages 137-140, January.
    6. Bettina Rockenbach & Manfred Milinski, 2006. "The efficient interaction of indirect reciprocity and costly punishment," Nature, Nature, vol. 444(7120), pages 718-723, December.
    7. Ernst Fehr & Urs Fischbacher, 2003. "The nature of human altruism," Nature, Nature, vol. 425(6960), pages 785-791, October.
    8. Martin A. Nowak & Karl Sigmund, 2005. "Evolution of indirect reciprocity," Nature, Nature, vol. 437(7063), pages 1291-1298, October.
    9. David G. Rand & Martin A. Nowak, 2011. "The evolution of antisocial punishment in optional public goods games," Nature Communications, Nature, vol. 2(1), pages 1-7, September.
    10. Christine Horne & Anna Cutlip, 2002. "Sanctioning Costs and Norm Enforcement," Rationality and Society, , vol. 14(3), pages 285-307, August.
    11. Isamu Okada & Hitoshi Yamamoto & Fujio Toriumi & Tatsuya Sasaki, 2015. "The Effect of Incentives and Meta-incentives on the Evolution of Cooperation," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-17, May.
    12. Hisashi Ohtsuki & Yoh Iwasa & Martin A. Nowak, 2009. "Indirect reciprocity provides only a narrow margin of efficiency for costly punishment," Nature, Nature, vol. 457(7225), pages 79-82, January.
    13. Dirk Helbing & Attila Szolnoki & Matjaž Perc & György Szabó, 2010. "Evolutionary Establishment of Moral and Double Moral Standards through Spatial Interactions," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-9, April.
    14. Rick L. Riolo & Michael D. Cohen & Robert Axelrod, 2001. "Evolution of cooperation without reciprocity," Nature, Nature, vol. 414(6862), pages 441-443, November.
    15. Arnon Lotem & Michael A. Fishman & Lewi Stone, 1999. "Evolution of cooperation between individuals," Nature, Nature, vol. 400(6741), pages 226-227, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fujio Toriumi & Hitoshi Yamamoto & Isamu Okada, 2020. "A belief in rewards accelerates cooperation on consumer-generated media," Journal of Computational Social Science, Springer, vol. 3(1), pages 19-31, April.
    2. Cheng, Fei & Chen, Tong & Chen, Qiao, 2020. "Rewards based on public loyalty program promote cooperation in public goods game," Applied Mathematics and Computation, Elsevier, vol. 378(C).
    3. Cui, Guang-Hai & Wang, Zhen & Ren, Jian-Kang & Lu, Kun & Li, Ming-Chu, 2016. "Promotion of cooperation induced by discriminators in the spatial multi-player donor–recipient game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 92-103.
    4. Isamu Okada, 2020. "A Review of Theoretical Studies on Indirect Reciprocity," Games, MDPI, vol. 11(3), pages 1-17, July.
    5. Hitoshi Yamamoto & Takahisa Suzuki, 2018. "Effects of beliefs about sanctions on promoting cooperation in a public goods game," Palgrave Communications, Palgrave Macmillan, vol. 4(1), pages 1-6, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isamu Okada, 2020. "A Review of Theoretical Studies on Indirect Reciprocity," Games, MDPI, vol. 11(3), pages 1-17, July.
    2. Ohdaira, Tetsushi, 2017. "Characteristics of the evolution of cooperation by the probabilistic peer-punishment based on the difference of payoff," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 77-83.
    3. Yu, Tongkui & Chen, Shu-Heng & Li, Honggang, 2011. "Social Norm, Costly Punishment and the Evolution to Cooperation," MPRA Paper 28814, University Library of Munich, Germany.
    4. José M Galán & Maciej M Łatek & Seyed M Mussavi Rizi, 2011. "Axelrod's Metanorm Games on Networks," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-11, May.
    5. Jeromos Vukov & Flávio L Pinheiro & Francisco C Santos & Jorge M Pacheco, 2013. "Reward from Punishment Does Not Emerge at All Costs," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-6, January.
    6. Si, Zehua & He, Zhixue & Shen, Chen & Tanimoto, Jun, 2023. "Speculative defectors as unexpected insulators of super cooperators in structured populations," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    7. Simon Gaechter & Benedikt Herrmann, 2008. "Reciprocity, culture, and human cooperation: Previous insights and a new cross-cultural experiment," Discussion Papers 2008-14, The Centre for Decision Research and Experimental Economics, School of Economics, University of Nottingham.
    8. Misato Inaba & Nobuyuki Takahashi, 2019. "Linkage Based on the Kandori Norm Successfully Sustains Cooperation in Social Dilemmas," Games, MDPI, vol. 10(1), pages 1-15, February.
    9. Satoshi Uchida & Hitoshi Yamamoto & Isamu Okada & Tatsuya Sasaki, 2019. "Evolution of Cooperation with Peer Punishment under Prospect Theory," Games, MDPI, vol. 10(1), pages 1-13, February.
    10. Saptarshi Pal & Christian Hilbe, 2022. "Reputation effects drive the joint evolution of cooperation and social rewarding," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Hitoshi Yamamoto & Takahisa Suzuki, 2018. "Effects of beliefs about sanctions on promoting cooperation in a public goods game," Palgrave Communications, Palgrave Macmillan, vol. 4(1), pages 1-6, December.
    12. Quan, Ji & Yu, Junyu & Li, Xia & Wang, Xianjia, 2023. "Conditional switching between social excluders and loners promotes cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    13. Alexander Isakov & David Rand, 2012. "The Evolution of Coercive Institutional Punishment," Dynamic Games and Applications, Springer, vol. 2(1), pages 97-109, March.
    14. Luo-Luo Jiang & Matjaž Perc & Attila Szolnoki, 2013. "If Cooperation Is Likely Punish Mildly: Insights from Economic Experiments Based on the Snowdrift Game," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-7, May.
    15. Madjid Eshaghi Gordji & Gholamreza Askari, 2018. "Hyper-rational choice theory," Papers 1801.10520, arXiv.org, revised Feb 2018.
    16. Tatsuya Sasaki & Isamu Okada & Satoshi Uchida & Xiaojie Chen, 2015. "Commitment to Cooperation and Peer Punishment: Its Evolution," Games, MDPI, vol. 6(4), pages 1-14, November.
    17. Karl Sigmund & Christoph Hauert & Arne Traulsen & Hannelore Silva, 2011. "Social Control and the Social Contract: The Emergence of Sanctioning Systems for Collective Action," Dynamic Games and Applications, Springer, vol. 1(1), pages 149-171, March.
    18. Dirk Helbing & Anders Johansson, 2010. "Cooperation, Norms, and Revolutions: A Unified Game-Theoretical Approach," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-15, October.
    19. Tetsushi Ohdaira & Takao Terano, 2009. "Cooperation in the Prisoner's Dilemma Game Based on the Second-Best Decision," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(4), pages 1-7.
    20. Ding, Rui & Wang, Xianjia & Liu, Yang & Zhao, Jinhua & Gu, Cuiling, 2023. "Evolutionary games with environmental feedbacks under an external incentive mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:443:y:2016:i:c:p:526-536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.