IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v416y2014icp80-89.html
   My bibliography  Save this article

Local rewiring rules for evolving complex networks

Author

Listed:
  • Colman, E.R.
  • Rodgers, G.J.

Abstract

The effects of link rewiring are considered for the class of directed networks where each node has the same fixed out-degree. We model a network generated by three mechanisms that are present in various networked systems; growth, global rewiring and local rewiring. During a rewiring phase a node is randomly selected, one of its out-going edges is detached from its destination then re-attached to the network in one of two possible ways; either globally to a randomly selected node, or locally to a descendant of a descendant of the originally selected node. Although the probability of attachment to a node increases with its connectivity, the probability of detachment also increases, the result is an exponential degree distribution with a small number of outlying nodes that have extremely large degree. We explain these outliers by identifying the circumstances for which a set of nodes can grow to very high degree.

Suggested Citation

  • Colman, E.R. & Rodgers, G.J., 2014. "Local rewiring rules for evolving complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 80-89.
  • Handle: RePEc:eee:phsmap:v:416:y:2014:i:c:p:80-89
    DOI: 10.1016/j.physa.2014.08.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114007316
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.08.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Sornette, "undated". "Dragon-Kings, Black Swans and the Prediction of Crises," Working Papers CCSS-09-005, ETH Zurich, Chair of Systems Design.
    2. T. S. Evans, 2007. "Exact solutions for network rewiring models," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 56(1), pages 65-69, March.
    3. Xie, Yan-Bo & Zhou, Tao & Wang, Bing-Hong, 2008. "Scale-free networks without growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(7), pages 1683-1688.
    4. Tao Zhou & Matúš Medo & Giulio Cimini & Zi-Ke Zhang & Yi-Cheng Zhang, 2011. "Emergence of Scale-Free Leadership Structure in Social Recommender Systems," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-6, July.
    5. Didier SORNETTE, 2009. "Dragon-Kings, Black Swans and the Prediction of Crises," Swiss Finance Institute Research Paper Series 09-36, Swiss Finance Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Hongli & Zhang, Siying, 2016. "Minimum structural controllability problems of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 467-476.
    2. Jiao, Bo & Nie, Yuan-ping & Shi, Jian-mai & Huang, Cheng-dong & Zhou, Ying & Du, Jing & Guo, Rong-hua & Tao, Ye-rong, 2016. "Scaling of weighted spectral distribution in deterministic scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 632-645.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Darrell Jiajie Tay & Chung-I Chou & Sai-Ping Li & Shang You Tee & Siew Ann Cheong, 2016. "Bubbles Are Departures from Equilibrium Housing Markets: Evidence from Singapore and Taiwan," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-13, November.
    2. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Can log-periodic power law structures arise from random fluctuations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 228-250.
    3. Wouter Vermeer & Otto Koppius & Peter Vervest, 2018. "The Radiation-Transmission-Reception (RTR) model of propagation: Implications for the effectiveness of network interventions," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-21, December.
    4. V. Filimonov & G. Demos & D. Sornette, 2017. "Modified profile likelihood inference and interval forecast of the burst of financial bubbles," Quantitative Finance, Taylor & Francis Journals, vol. 17(8), pages 1167-1186, August.
    5. A. Sienkiewicz & T. Gubiec & R. Kutner & Z. R. Struzik, 2013. "Dynamic structural and topological phase transitions on the Warsaw Stock Exchange: A phenomenological approach," Papers 1301.6506, arXiv.org.
    6. J. Lorenz & S. Battiston & F. Schweitzer, 2009. "Systemic risk in a unifying framework for cascading processes on networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 441-460, October.
    7. Domino, Krzysztof, 2020. "Multivariate cumulants in outlier detection for financial data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    8. Rebecca Westphal & Didier Sornette, 2019. "Market Impact and Performance of Arbitrageurs of Financial Bubbles in An Agent-Based Model," Swiss Finance Institute Research Paper Series 19-29, Swiss Finance Institute.
    9. Kozłowska, M. & Denys, M. & Wiliński, M. & Link, G. & Gubiec, T. & Werner, T.R. & Kutner, R. & Struzik, Z.R., 2016. "Dynamic bifurcations on financial markets," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 126-142.
    10. Rodríguez-Martínez, C.M. & Coronel-Brizio, H.F. & Hernández-Montoya, A.R., 2021. "A multi-scale symmetry analysis of uninterrupted trends returns in daily financial indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    11. Daniel Traian Pele & Miruna Mazurencu-Marinescu & Peter Nijkamp, 2013. "Herding Behaviour, Bubbles and Log Periodic Power Laws in Illiquid Stock Markets. A Case Study on the Bucharest Stock Exchange," Tinbergen Institute Discussion Papers 13-109/VIII, Tinbergen Institute.
    12. Heinrich, Torsten, 2016. "The Narrow and the Broad Approach to Evolutionary Modeling in Economics," MPRA Paper 75797, University Library of Munich, Germany.
    13. Sonntag, Dominik, 2018. "Die Theorie der fairen geometrischen Rendite [The Theory of Fair Geometric Returns]," MPRA Paper 87082, University Library of Munich, Germany.
    14. Glette-Iversen, Ingrid & Aven, Terje, 2021. "On the meaning of and relationship between dragon-kings, black swans and related concepts," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    15. Vladimir Filimonov & Didier Sornette, 2014. "Power law scaling and "Dragon-Kings" in distributions of intraday financial drawdowns," Papers 1407.5037, arXiv.org, revised Apr 2015.
    16. Raphael Douady & Antoine Kornprobst, 2018. "An Empirical Approach To Financial Crisis Indicators Based On Random Matrices," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(03), pages 1-22, May.
    17. Haas, Armin & Onischka, Mathias & Fucik, Markus, 2013. "Black swans, dragon kings, and Bayesian risk management," Economics Discussion Papers 2013-11, Kiel Institute for the World Economy (IfW Kiel).
    18. Molina-Muñoz, Jesús & Mora-Valencia, Andrés & Perote, Javier, 2020. "Market-crash forecasting based on the dynamics of the alpha-stable distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    19. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
    20. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Why credit risk markets are predestined for exhibiting log-periodic power law structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 427-449.

    More about this item

    Keywords

    Random networks; Rewiring;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:416:y:2014:i:c:p:80-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.